Skip to main content

Treewidth Versus Clique Number in Graph Classes with a Forbidden Structure

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12301))

Included in the following conference series:

  • 478 Accesses

Abstract

Treewidth is an important graph invariant, relevant for both structural and algorithmic reasons. A necessary condition for a graph class to have bounded treewidth is the absence of large cliques. We study graph classes in which this condition is also sufficient, which we call \((\text {tw},\omega )\)-bounded. Such graph classes are known to have useful algorithmic applications related to variants of the clique and k-coloring problems. We consider six well-known graph containment relations: the minor, topological minor, subgraph, induced minor, induced topological minor, and induced subgraph relations. For each of them, we give a complete characterization of the graphs H for which the class of graphs excluding H is \((\text {tw},\omega )\)-bounded. Our results imply that the class of 1-perfectly orientable graphs is \((\text {tw},\omega )\)-bounded, answering a question of Brešar, Hartinger, Kos, and Milanič from 2018. We also reveal some further algorithmic implications of \((\text {tw},\omega )\)-boundedness related to list k-coloring and clique problems.

This research was funded in part by the Slovenian Research Agency (I0-0035, research program P1-0285, research projects J1-9110, N1-0102, and N1-0160, and a Young Researchers Grant).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belmonte, R., Otachi, Y., Schweitzer, P.: Induced minor free graphs: isomorphism and clique-width. Algorithmica 80(1), 29–47 (2016). https://doi.org/10.1007/s00453-016-0234-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Błasiok, J., Kamiński, M., Raymond, J.F., Trunck, T.: Induced minors and well-quasi-ordering. J. Comb. Theor. Ser. B 134, 110–142 (2019). https://doi.org/10.1016/j.jctb.2018.05.005

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H., Gustedt, J., Telle, J.A.: Linear-time register allocation for a fixed number of registers. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, pp. 574–583. ACM, New York (1998)

    Google Scholar 

  4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/S0097539793251219

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Ono, H., Otachi, Y.: Degree-constrained orientation of maximum satisfaction: graph classes and parameterized complexity. In: 27th International Symposium on Algorithms and Computation, LIPIcs. LeibnizInt. Proc. Inform., vol. 64, pp. Art. No. 20, 12. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2016). https://doi.org/10.1007/s00453-017-0399-9

  6. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7(5–6), 555–581 (1992). https://doi.org/10.1007/BF01758777

    Article  MathSciNet  MATH  Google Scholar 

  7. Brešar, B., Hartinger, T.R., Kos, T., Milanič, M.: 1-perfectly orientable \(K_4\)-minor-free and outerplanar graphs. Discret. Appl. Math. 248, 33–45 (2018). https://doi.org/10.1016/j.dam.2017.09.017

    Article  MATH  Google Scholar 

  8. Cameron, K., Chaplick, S., Hoàng, C.T.: On the structure of (pan, even hole)-free graphs. J. Graph Theor. 87(1), 108–129 (2018). https://doi.org/10.1002/jgt.22146

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaplick, S., Zeman, P.: Combinatorial problems on \(H\)-graphs. Electron. Notes Discret. Math. 61, 223–229 (2017). https://doi.org/10.1016/j.endm.2017.06.042

    Article  MATH  Google Scholar 

  10. Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. J. ACM 63(5), 65 (2016). https://doi.org/10.1145/2820609. Art. 40

    Article  MathSciNet  MATH  Google Scholar 

  11. Chuzhoy, J.: Improved bounds for the flat wall theorem. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, pp. 256–275 (2015). https://doi.org/10.1137/1.9781611973730.20

  12. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

    Article  MathSciNet  MATH  Google Scholar 

  13. Dabrowski, K.K., Johnson, M., Paulusma, D.: Clique-width for hereditary graph classes. In: Surveys in Combinatorics 2019, London Math. Soc. Lecture Note Series, vol. 456, pp. 1–56. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108649094

  14. Dabrowski, K.K., Lozin, V.V., Paulusma, D.: Clique-width and well-quasi-ordering of triangle-free graph classes. J. Comput. Syst. Sci. 108, 64–91 (2020). https://doi.org/10.1016/j.jcss.2019.09.001

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, G.: Subgraphs and well-quasi-ordering. J. Graph Theor. 16(5), 489–502 (1992). https://doi.org/10.1002/jgt.3190160509

    Article  MathSciNet  MATH  Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. II. On completeness for \(W[1]\). Theoret. Comput. Sci. 141(1–2), 109–131 (1995). https://doi.org/10.1016/0304-3975(94)00097-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput. 38(2), 629–657 (2008). https://doi.org/10.1137/05064299X

    Article  MathSciNet  MATH  Google Scholar 

  18. Fomin, F.V., Golovach, P., Thilikos, D.M.: Contraction obstructions for treewidth. J. Comb. Theor. Ser. B 101(5), 302–314 (2011). https://doi.org/10.1016/j.jctb.2011.02.008

    Article  MathSciNet  MATH  Google Scholar 

  19. Garnero, V., Paul, C., Sau, I., Thilikos, D.M.: Explicit linear kernels for packing problems. Algorithmica 81(4), 1615–1656 (2018). https://doi.org/10.1007/s00453-018-0495-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of coloring graphs with forbidden subgraphs. J. Graph Theor. 84(4), 331–363 (2017). https://doi.org/10.1002/jgt.22028

    Article  MathSciNet  MATH  Google Scholar 

  21. Golovach, P.A., Paulusma, D., Ries, B.: Coloring graphs characterized by a forbidden subgraph. Discret. Appl. Math. 180, 101–110 (2015). https://doi.org/10.1016/j.dam.2014.08.008

    Article  MathSciNet  MATH  Google Scholar 

  22. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, vol. 57, 2nd edn. Elsevier, Amsterdam (2004)

    Google Scholar 

  23. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastos. Mat. 19(3–4), 413–441 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Gyárfás, A., Zaker, M.: On \((\delta,\chi )\)-bounded families of graphs. Electron. J. Comb. 18(1), 108 (2011). https://doi.org/10.37236/595

    Article  MathSciNet  MATH  Google Scholar 

  25. Hartinger, T.R.: New Characterizations in Structural Graph Theory: \(1\)-Perfectly Orientable Graphs, Graph Products, and the Price of Connectivity. Ph.D. Thesis. University of Primorska (2017)

    Google Scholar 

  26. Hartinger, T.R., Milanič, M.: Partial characterizations of 1-perfectly orientable graphs. J. Graph Theor. 85(2), 378–394 (2017). https://doi.org/10.1002/jgt.22067

    Article  MathSciNet  MATH  Google Scholar 

  27. Hell, P., Nešetřil, J.: On the complexity of \(H\)-coloring. J. Comb. Theor. Ser. B 48(1), 92–110 (1990). https://doi.org/10.1016/0095-8956(90)90132-J

    Article  MathSciNet  MATH  Google Scholar 

  28. Hermelin, D., Mestre, J., Rawitz, D.: Optimization problems in dotted interval graphs. Discret. Appl. Math. 174, 66–72 (2014). https://doi.org/10.1016/j.dam.2014.04.014

    Article  MathSciNet  MATH  Google Scholar 

  29. van’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph contractions and induced minors. Discret. Appl. Math. 160(6), 799–809 (2012). https://doi.org/10.1016/j.dam.2010.05.005

  30. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York (1995). Wiley-Interscience Series in Discrete Mathematics and Optimization

    MATH  Google Scholar 

  31. Kamiński, M., Raymond, J.F., Trunck, T.: Well-quasi-ordering \(H\)-contraction-free graphs. Discret. Appl. Math. 248, 18–27 (2018). https://doi.org/10.1016/j.dam.2017.02.018

    Article  MathSciNet  MATH  Google Scholar 

  32. Karthick, T., Maffray, F.: Vizing bound for the chromatic number on some graph classes. Graphs Comb. 32(4), 1447–1460 (2015). https://doi.org/10.1007/s00373-015-1651-1

    Article  MathSciNet  MATH  Google Scholar 

  33. Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica 4(4), 307–316 (1984). https://doi.org/10.1007/BF02579141

    Article  MathSciNet  MATH  Google Scholar 

  34. Lovász, L.: Graph minor theory. Bull. Am. Math. Soc. (N.S.) 43(1), 75–86 (2006). https://doi.org/10.1090/S0273-0979-05-01088-8

    Article  MathSciNet  MATH  Google Scholar 

  35. Malyshev, D.S.: A complexity dichotomy and a new boundary class for the dominating set problem. J. Comb. Optim. 32(1), 226–243 (2016). https://doi.org/10.1007/s10878-015-9872-z

    Article  MathSciNet  MATH  Google Scholar 

  36. Markossian, S.E., Gasparian, G.S., Reed, B.A.: \(\beta \)-perfect graphs. J. Comb. Theor. Ser. B 67(1), 1–11 (1996). https://doi.org/10.1006/jctb.1996.0030

    Article  MATH  Google Scholar 

  37. Raghavan, V., Spinrad, J.: Robust algorithms for restricted domains. J. Algorithms 48(1), 160–172 (2003). https://doi.org/10.1016/S0196-6774(03)00048-8

    Article  MathSciNet  MATH  Google Scholar 

  38. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. (2) 30(4), 264–286 (1929). https://doi.org/10.1112/plms/s2-30.1.264

    Article  MathSciNet  MATH  Google Scholar 

  39. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Comb. Theor. Ser. B 41(1), 92–114 (1986). https://doi.org/10.1016/0095-8956(86)90030-4

    Article  MathSciNet  MATH  Google Scholar 

  40. Scheffler, P.: What graphs have bounded tree-width? In: Proceedings of the 7th Fischland Colloquium, III (Wustrow, 1988), pp. 31–38, no. 41 (1990)

    Google Scholar 

  41. Schweitzer, P.: Towards an isomorphism dichotomy for hereditary graph classes. Theo. Comput. Syst. 61(4), 1084–1127 (2017). https://doi.org/10.1007/s00224-017-9775-8

    Article  MathSciNet  MATH  Google Scholar 

  42. Scott, A., Seymour, P.: A survey of \(\chi \)-boundedness. arXiv:1812.07500 [math.CO] (2018)

  43. Silva, A., da Silva, A.A., Sales, C.L.: A bound on the treewidth of planar even-hole-free graphs. Discret. Appl. Math. 158(12), 1229–1239 (2010). https://doi.org/10.1016/j.dam.2009.07.010

    Article  MathSciNet  MATH  Google Scholar 

  44. Sintiari, N.L.D., Trotignon, N.: (Theta, triangle)-free and (even hole, \(K_4\))-free graphs. Part 1 : Layered wheels. arXiv:1906.10998 [cs.DM] (2019)

  45. Skodinis, K.: Efficient analysis of graphs with small minimal separators. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 155–166. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46784-X_16

    Chapter  Google Scholar 

  46. Weißauer, D.: In absence of long chordless cycles, large tree-width becomes a local phenomenon. J. Comb. Theor. Ser. B 139, 342–352 (2019). https://doi.org/10.1016/j.jctb.2019.04.004

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu, Y., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth and related problems. J. Artif. Intell. Res. 49, 569–600 (2014). https://doi.org/10.1613/jair.4030

    Article  MATH  Google Scholar 

  48. Zaker, M.: On lower bounds for the chromatic number in terms of vertex degree. Discret. Math. 311(14), 1365–1370 (2011). https://doi.org/10.1016/j.disc.2011.03.025

    Article  MathSciNet  MATH  Google Scholar 

  49. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theor. Comput. 3, 103–128 (2007). https://doi.org/10.4086/toc.2007.v003a006

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Milanič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dallard, C., Milanič, M., Štorgel, K. (2020). Treewidth Versus Clique Number in Graph Classes with a Forbidden Structure. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60440-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60439-4

  • Online ISBN: 978-3-030-60440-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics