Skip to main content

Automated Measurements of Key Morphological Features of Human Embryos for IVF

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

A major challenge in clinical In-Vitro Fertilization (IVF) is selecting the highest quality embryo to transfer to the patient in the hopes of achieving a pregnancy. Time-lapse microscopy provides clinicians with a wealth of information for selecting embryos. However, the resulting movies of embryos are currently analyzed manually, which is time consuming and subjective. Here, we automate feature extraction of time-lapse microscopy of human embryos with a machine-learning pipeline of five convolutional neural networks (CNNs). Our pipeline consists of (1) semantic segmentation of the regions of the embryo, (2) regression predictions of fragment severity, (3) classification of the developmental stage, and object instance segmentation of (4) cells and (5) pronuclei. Our approach greatly speeds up the measurement of quantitative, biologically relevant features that may aid in embryo selection.

B. D. Leahy, W.-D. Jang, H. Y. Yang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alikani, M., Cohen, J., Tomkin, G., Garrisi, G.J., Mack, C., Scott, R.T.: Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil. Steril. 71(5), 836–842 (1999)

    Article  Google Scholar 

  2. Amir, H., et al.: Time-lapse imaging reveals delayed development of embryos carrying unbalanced chromosomal translocations. J. Assist. Reprod. Genet. 36(2), 315–324 (2018)

    Article  Google Scholar 

  3. Armstrong, S., Bhide, P., Jordan, V., Pacey, A., Marjoribanks, J., Farquhar, C.: Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. (5), Art. No. CD011320 (2019)

    Google Scholar 

  4. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    Article  Google Scholar 

  5. Broughton, D.E., Moley, K.H.: Obesity and female infertility: potential mediators of obesity’s impact. Fertil. Steril. 107(4), 840–847 (2017)

    Article  Google Scholar 

  6. Cohen, J., Alikani, M., Trowbridge, J., Rosenwaks, Z.: Implantation enhancement by selective assisted hatching using zona drilling of human embryos with poor prognosis. Hum. Reprod. 7(5), 685–691 (1992)

    Article  Google Scholar 

  7. Cui, W.: Mother or nothing: the agony of infertility. Bull. World Health Organ. 88, 881 (2010)

    Article  Google Scholar 

  8. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3150–3158 (2016)

    Google Scholar 

  9. Dolinko, A.V., Farland, L., Kaser, D., Missmer, S., Racowsky, C.: National survey on use of time-lapse imaging systems in IVF laboratories. J. Assist. Reprod. Genet. 34(9), 1167–1172 (2017)

    Article  Google Scholar 

  10. Elder, K., Dale, B.: In-Vitro Fertilization. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  11. Filho, E.S., Noble, J., Poli, M., Griffiths, T., Emerson, G., Wells, D.: A method for semi-automatic grading of human blastocyst microscope images. Hum. Reprod. 27(9), 2641–2648 (2012)

    Article  Google Scholar 

  12. Franasiak, J.M., et al.: The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 101(3), 656–663 (2014)

    Article  Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Hoffman, R., Gross, L.: Modulation contrast microscope. Appl. Opt. 14(5), 1169–1176 (1975)

    Article  Google Scholar 

  17. Khan, A., Gould, S., Salzmann, M.: Deep convolutional neural networks for human embryonic cell counting. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 339–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_25

    Chapter  Google Scholar 

  18. Kheradmand, S., Singh, A., Saeedi, P., Au, J., Havelock, J.: Inner cell mass segmentation in human HMC embryo images using fully convolutional network. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1752–1756. IEEE (2017)

    Google Scholar 

  19. Khosravi, P., et al.: Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2(1), 1–9 (2019)

    Article  Google Scholar 

  20. Kragh, M.F., Rimestad, J., Berntsen, J., Karstoft, H.: Automatic grading of human blastocysts from time-lapse imaging. Comput. Biol. Med. 115, 103494 (2019)

    Article  Google Scholar 

  21. Lau, T., Ng, N., Gingold, J., Desai, N., McAuley, J., Lipton, Z.C.: Embryo staging with weakly-supervised region selection and dynamically-decoded predictions. arXiv preprint arXiv:1904.04419 (2019)

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  24. Nickkho-Amiry, M., Horne, G., Akhtar, M., Mathur, R., Brison, D.R.: Hydatidiform molar pregnancy following assisted reproduction. J. Assist. Reprod. Genet. 36(4), 667–671 (2019). https://doi.org/10.1007/s10815-018-1389-9

    Article  Google Scholar 

  25. Norwitz, E.R., Edusa, V., Park, J.S.: Maternal physiology and complications of multiple pregnancy. Semin. Perinatol. 29(5), 338–348 (2005)

    Article  Google Scholar 

  26. Petersen, B.M., Boel, M., Montag, M., Gardner, D.K.: Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum. Reprod. 31(10), 2231–2244 (2016)

    Article  Google Scholar 

  27. Racowsky, C., Stern, J.E., Gibbons, W.E., Behr, B., Pomeroy, K.O., Biggers, J.D.: National collection of embryo morphology data into society for assisted reproductive technology clinic outcomes reporting system: associations among day 3 cell number, fragmentation and blastomere asymmetry, and live birth rate. Fertil. Steril. 95(6), 1985–1989 (2011)

    Article  Google Scholar 

  28. Rad, R.M., Saeedi, P., Au, J., Havelock, J.: A hybrid approach for multiple blastomeres identification in early human embryo images. Comput. Biol. Med. 101, 100–111 (2018)

    Article  Google Scholar 

  29. Practice Committee of the American Society for Reproductive Medicine: Guidance on the limits to the number of embryos to transfer a committee opinion. Fertil. Steril. 107(4), 901 (2017)

    Google Scholar 

  30. Rubio, I., et al.: Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the embryoscope. Fertil. Steril. 102(5), 1287–1294 (2014)

    Article  Google Scholar 

  31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  32. Tran, D., Cooke, S., Illingworth, P., Gardner, D.: Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum. Reprod. 34(6), 1011–1018 (2019)

    Article  Google Scholar 

  33. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

Download references

Acknowledgements

We acknowledge M. Venturas and P. Maeder-York for help validating labels and approaches. This work was funded in part by NIH grant 5U54CA225088 and NSF Grant NCS-FO 1835231, by the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard (award number 1764269), and by the Harvard Quantitative Biology Initiative. DJN and DBY also acknowledge generous support from the Perelson family, which made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Leahy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 1601 KB)

Supplementary material 2 (mp4 2362 KB)

Supplementary material 3 (mp4 2090 KB)

Supplementary material 4 (mp4 2146 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leahy, B.D. et al. (2020). Automated Measurements of Key Morphological Features of Human Embryos for IVF. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics