Skip to main content

Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for Annotation-Efficient Cardiac Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12261))

Abstract

Medical image annotations are prohibitively time-consuming and expensive to obtain. To alleviate annotation scarcity, many approaches have been developed to efficiently utilize extra information, e.g., semi-supervised learning further exploring plentiful unlabeled data, domain adaptation including multi-modality learning and unsupervised domain adaptation resorting to the prior knowledge from additional modality. In this paper, we aim to investigate the feasibility of simultaneously leveraging abundant unlabeled data and well-established cross-modality data for annotation-efficient medical image segmentation. To this end, we propose a novel semi-supervised domain adaptation approach, namely Dual-Teacher, where the student model not only learns from labeled target data (e.g., CT), but also explores unlabeled target data and labeled source data (e.g., MR) by two teacher models. Specifically, the student model learns the knowledge of unlabeled target data from intra-domain teacher by encouraging prediction consistency, as well as the shape priors embedded in labeled source data from inter-domain teacher via knowledge distillation. Consequently, the student model can effectively exploit the information from all three data resources and comprehensively integrate them to achieve improved performance. We conduct extensive experiments on MM-WHS 2017 dataset and demonstrate that our approach is able to concurrently utilize unlabeled data and cross-modality data with superior performance, outperforming semi-supervised learning and domain adaptation methods with a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anil, R., Pereyra, G., Passos, A., Ormandi, R., Dahl, G.E., Hinton, G.E.: Large scale distributed neural network training through online distillation. arXiv preprint arXiv:1804.03235 (2018)

  2. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872 (2019)

    Google Scholar 

  3. Dou, Q., Liu, Q., Heng, P.A., Glocker, B.: Unpaired multi-modal segmentation via knowledge distillation. In: IEEE Transactions on Medical Imaging (2020)

    Google Scholar 

  4. Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.A.: Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 691–697 (2018)

    Google Scholar 

  5. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  6. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  7. Hoffman, J., et al.: Cycada: Cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998 (2018)

    Google Scholar 

  8. Huo, Y., et al.: Synseg-net: synthetic segmentation without target modality ground truth. IEEE Trans. Med. Imaging 38(4), 1016–1025 (2018)

    Article  Google Scholar 

  9. Jiang, J., et al.: Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 777–785. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_86

    Chapter  Google Scholar 

  10. Jue, J., Jason, H., Neelam, T., Andreas, R., Sean, B.L., Joseph, D.O., Harini, V.: Integrating cross-modality hallucinated MRI with CT to aid mediastinal lung tumor segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 221–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_25

    Chapter  Google Scholar 

  11. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  12. Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML. vol. 3, p. 2 (2013)

    Google Scholar 

  13. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  14. Liu, F., Deng, C., Bi, F., Yang, Y.: Dual teaching: a practical semi-supervised wrapper method. arXiv preprint arXiv:1611.03981 (2016)

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  16. Orbes-Arteainst, M., et al.: Knowledge distillation for semi-supervised domain adaptation. In: Zhou, L., et al. (eds.) OR 2.0/MLCN -2019. LNCS, vol. 11796, pp. 68–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32695-1_8

    Chapter  Google Scholar 

  17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  18. Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. NeuroImage 194, 1–11 (2019)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  21. Valindria, V.V., et al.: Multi-modal learning from unpaired images: Application to multi-organ segmentation in CT and MRI. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 547–556. IEEE (2018)

    Google Scholar 

  22. Van Tulder, G., de Bruijne, M.: Learning cross-modality representations from multi-modal images. IEEE Trans. Med. Imaging 38(2), 638–648 (2018)

    Article  Google Scholar 

  23. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  25. Zhuang, X., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med. Image Anal. 58, 101537 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by Key-Area Research and Development Program of Guangdong Province, China under Project No. 2020B010165004, Hong Kong Innovation and Technology Fund under Project No. ITS/426/17FP and ITS/311/18FP and National Natural Science Foundation of China under Project No. U1813204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lequan Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, K., Wang, S., Yu, L., Heng, PA. (2020). Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for Annotation-Efficient Cardiac Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics