Skip to main content

Interpretable Segmentation of Medical Free-Text Records Based on Word Embeddings

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2020)

Abstract

Is it true that patients with similar conditions get similar diagnoses? In this paper we present a natural language processing (NLP) method that can be used to validate this claim. We (1) introduce a method for representation of medical visits based on free-text descriptions recorded by doctors, (2) introduce a new method for segmentation of patients’ visits, (3) present an application of the proposed method on a corpus of 100,000 medical visits and (4) show tools for interpretation and exploration of derived knowledge representation. With the proposed method we obtained stable and separated segments of visits which were positively validated against medical diagnoses. We show how the presented algorithm may be used to aid doctors in their practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostolova, E., Channin, D.S., Demner-Fushman, D., Furst, J., Lytinen, S., Raicu, D.: Automatic segmentation of clinical texts. In: Proceedings of EMBC, pp. 5905–5908 (2009)

    Google Scholar 

  2. Banea, C., Chen, D., Mihalcea, R., Cardie, C., Wiebe, J.: Simcompass: using deep learning word embeddings to assess cross-level similarity. In: Proceedings of SemEval, pp. 560–565 (2014)

    Google Scholar 

  3. Biecek, P.: DALEX: explainers for complex predictive models in R. J. Mach. Learn. Res. 19(84), 1–5 (2018)

    MATH  Google Scholar 

  4. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl-1), D267–D270 (2004)

    Article  Google Scholar 

  5. Chiu, B., Crichton, G., Korhonen, A., Pyysalo, S.: How to train good word embeddings for biomedical NLP. In: Proceedings of BioNLP, pp. 166–174 (2016)

    Google Scholar 

  6. Choi, E., et al.: Multi-layer representation learning for medical concepts. In: SIGKDD Proceedings, pp. 1495–1504. ACM (2016)

    Google Scholar 

  7. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Medical concept representation learning from electronic health records and its application on heart failure prediction. arXiv preprint arXiv:1602.03686 (2016)

  8. Choi, Y., Chiu, C.Y.I., Sontag, D.: Learning low-dimensional representations of medical concepts. AMIA Summits Transl. Sci. 2016, 41 (2016)

    Google Scholar 

  9. De Boom, C., Van Canneyt, S., Demeester, T., Dhoedt, B.: Representation learning for very short texts using weighted word embedding aggregation. Pattern Recogn. Lett. 80, 150–156 (2016)

    Article  Google Scholar 

  10. De Vine, L., Zuccon, G., Koopman, B., Sitbon, L., Bruza, P.: Medical semantic similarity with a neural language model. In: Proceedings of CIKM, pp. 1819–1822. ACM (2014)

    Google Scholar 

  11. Fetter, R.B., Shin, Y., Freeman, J.L., Averill, R.F., Thompson, J.D.: Case mix definition by diagnosis-related groups. Med. Care 18(2), i-53 (1980)

    Google Scholar 

  12. Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms: the C-value/NC-value method. Int. J. Digit. Libr. 3, 115–130 (2000)

    Article  Google Scholar 

  13. Ganesan, K., Subotin, M.: A general supervised approach to segmentation of clinical texts. In: IEEE International Conference on Big Data, pp. 33–40 (2014)

    Google Scholar 

  14. Gordon, L., Grantcharov, T., Rudzicz, F.: Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg. 154(11), 1064–1065 (2019)

    Article  Google Scholar 

  15. Jaworski, W., Kozakoszczak, J.: ENIAM: categorial syntactic-semantic parser for Polish. In: Proceedings of COLING, pp. 243–247 (2016)

    Google Scholar 

  16. Jaworski, W., et al.: Categorial parser. CLARIN-PL digital repository (2018)

    Google Scholar 

  17. Kobylińska, K., Mikołajczyk, T., Adamek, M., Orłowski, T., Biecek, P.: Explainable machine learning for modeling of early postoperative mortality in lung cancer. In: Marcos, M., et al. (eds.) KR4HC/TEAAM -2019. LNCS (LNAI), vol. 11979, pp. 161–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37446-4_13

    Chapter  Google Scholar 

  18. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  19. Marciniak, M., Mykowiecka, A., Rychlik, P.: TermoPL – a flexible tool for terminology extraction. In: Proceedings of LREC, pp. 2278–2284. ELRA, Portorož, Slovenia (2016)

    Google Scholar 

  20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  21. Minarro-Giménez, J.A., Marin-Alonso, O., Samwald, M.: Exploring the application of deep learning techniques on medical text corpora. Stud. Health Technol. Inform. 205, 584–588 (2014)

    Google Scholar 

  22. Newman-Griffis, D., Lai, A.M., Fosler-Lussier, E.: Insights into analogy completion from the biomedical domain. arXiv preprint arXiv:1706.02241 (2017)

  23. Orosz, G., Novák, A., Prószéky, G.: Hybrid text segmentation for Hungarian clinical records. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013. LNCS (LNAI), vol. 8265, pp. 306–317. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45114-0_25

    Chapter  Google Scholar 

  24. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  25. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  26. Ruffini, M., Gavaldà, R., Limón, E.: Clustering patients with tensor decomposition. arXiv preprint arXiv:1708.08994 (2017)

  27. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  28. Waszczuk, J.: Harnessing the CRF complexity with domain-specific constraints. The case of morphosyntactic tagging of a highly inflected language. In: Proceedings of COLING, pp. 2789–2804 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by NCBR Grant POIR.01.01.01-00-0328/17. PBi was supported by NCN Opus grant 2016/21/B/ST6/02176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Gabriel Dobrakowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobrakowski, A.G., Mykowiecka, A., Marciniak, M., Jaworski, W., Biecek, P. (2020). Interpretable Segmentation of Medical Free-Text Records Based on Word Embeddings. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2020. Lecture Notes in Computer Science(), vol 12117. Springer, Cham. https://doi.org/10.1007/978-3-030-59491-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59491-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59490-9

  • Online ISBN: 978-3-030-59491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics