Skip to main content

Tackling MeSH Indexing Dataset Shift with Time-Aware Concept Embedding Learning

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12114))

Included in the following conference series:

Abstract

Medical Subject Headings (MeSH) is a controlled thesaurus developed by the National Library of Medicine (NLM). MeSH covers a wide variety of biomedical topics like diseases and drugs, which are used to classify PubMed articles. Human indexers at NLM have been annotating the PubMed articles with MeSH for decades, and have collected millions of MeSH-labeled articles. Recently, many deep learning algorithms have been developed to automatically annotate the MeSH terms, utilizing this large-scale MeSH indexing dataset. However, most of the models are trained on all articles non-discriminatively, ignoring the temporal structure of the dataset. In this paper, we uncover and thoroughly characterize the problem of MeSH indexing dataset shift (MeSHIFT), meaning that the data distribution changes with time. MeSHIFT includes the shift of input articles, output MeSH labels and annotation rules. We found that machine learning models suffer from performance loss for not tackling the problem of MeSHIFT. Towards this end, we present a novel method, time-aware concept embedding learning (TaCEL), as an attempt to solve it. TaCEL is a plug-in module which can be easily incorporated in other automatic MeSH indexing models. Results show that TaCEL improves current state-of-the-art models with only minimum additional costs. We hope this work can facilitate understanding of the MeSH indexing dataset, especially its temporal structure, and provide a solution that can be used to improve current models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.nlm.nih.gov/mesh/.

  2. 2.

    In this paper, we use “abstracts” and “articles” interchangeably.

  3. 3.

    Since year is the minimum unit in the MeSH indexing dataset.

  4. 4.

    http://participants-area.bioasq.org/general_information/Task7a/.

  5. 5.

    https://meshb.nlm.nih.gov/record/ui?ui=D008969.

  6. 6.

    We didn’t compare with the BioASQ challenge results for several reasons: (1) labels of the challenge test sets are not publicly available; (2) submitted results are generated by model ensembles. In the experiments, we use the challenge winner system, MeSHProbeNet [24], as a strong baseline (i.e. the Backbone Model).

References

  1. Aronson, A.R.: Effective mapping of biomedical text to the UMLs Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium, p. 17. American Medical Informatics Association (2001)

    Google Scholar 

  2. Brzeziński, D., Stefanowski, J.: Accuracy updated ensemble for data streams with concept drift. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011. LNCS (LNAI), vol. 6679, pp. 155–163. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21222-2_19

    Chapter  Google Scholar 

  3. Costa, J., Silva, C., Antunes, M., Ribeiro, B.: Concept drift awareness in twitter streams. In: 2014 13th International Conference on Machine Learning and Applications, pp. 294–299. IEEE (2014)

    Google Scholar 

  4. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: A case-based technique for tracking concept drift in spam filtering. In: Macintosh, A., Ellis, R., Allen, T. (eds.) SGAI 2004, pp. 3–16. Springer, London (2004). https://doi.org/10.1007/1-84628-103-2_1

    Chapter  Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Jin, Q., Dhingra, B., Cohen, W., Lu, X.: AttentionMeSH: simple, effective and interpretable automatic mesh indexer. In: Proceedings of the 6th BioASQ Workshop A Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering, pp. 47–56 (2018)

    Google Scholar 

  8. Karaa, A., Goldstein, A.: The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr. Diab. 16(1), 1–9 (2015)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 447–456. ACM (2009)

    Google Scholar 

  11. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  12. Moen, S., Ananiadou, T.S.S.: Distributional semantics resources for biomedical text processing. In: Proceedings of LBM (2013)

    Google Scholar 

  13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  14. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  15. Peng, S., You, R., Wang, H., Zhai, C., Mamitsuka, H., Zhu, S.: DeepMeSH: deep semantic representation for improving large-scale mesh indexing. Bioinformatics 32(12), i70–i79 (2016)

    Article  Google Scholar 

  16. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

  17. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  18. Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382. ACM (2001)

    Google Scholar 

  19. Sun, J., Li, H.: Dynamic financial distress prediction using instance selection for the disposal of concept drift. Expert Syst. Appl. 38(3), 2566–2576 (2011)

    Article  Google Scholar 

  20. Tsatsaronis, G., et al.: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinform. 16(1), 138 (2015)

    Article  Google Scholar 

  21. Tsymbal, A.: The problem of concept drift: definitions and related work. Comput. Sci. Dep. Trinity College Dublin 106(2), 58 (2004)

    Google Scholar 

  22. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235. ACM (2003)

    Google Scholar 

  23. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  24. Xun, G., Jha, K., Yuan, Y., Wang, Y., Zhang, A.: MeSHProbeNet: a self-attentive probe net for mesh indexing. Bioinformatics 35, 3794–3802 (2019)

    Article  Google Scholar 

  25. Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient descent learning. Constr. Approximation 26(2), 289–315 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, Q., Ding, H., Li, L., Huang, H., Wang, L., Yan, J. (2020). Tackling MeSH Indexing Dataset Shift with Time-Aware Concept Embedding Learning. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12114. Springer, Cham. https://doi.org/10.1007/978-3-030-59419-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59419-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59418-3

  • Online ISBN: 978-3-030-59419-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics