Skip to main content

A Systematic Assessment of Feature Extraction Methods for Robust Prediction of Neuropsychological Scores from Functional Connectivity Data

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

Multivariate prediction of human behavior from resting state data is gaining increasing popularity in the neuroimaging community, with far-reaching translational implications in neurology and psychiatry. However, the high dimensionality of neuroimaging data increases the risk of overfitting, calling for the use of dimensionality reduction methods to build robust predictive models. In this work, we assess the ability of four dimensionality reduction techniques to extract relevant features from resting state functional connectivity matrices of stroke patients, which are then used to build a predictive model of the associated language deficits based on cross-validated regularized regression. Features extracted by Principal Component Analysis (PCA) were found to be the best predictors, followed by Independent Component Analysis (ICA), Dictionary Learning (DL) and Non-Negative Matrix Factorization. However, ICA and DL led to more parsimonious models. Overall, our findings suggest that the choice of the dimensionality reduction technique should not only be based on prediction/regression accuracy, but also on considerations about model complexity and interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)

    Article  Google Scholar 

  2. Salvalaggio, A., de Filippo De Grazia, M., Zorzi, M., de Schotten, M.T., Corbetta, M.: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain 143(7), 2173–2188 (2020). awaa156

    Google Scholar 

  3. Siegel, J.S., et al.: Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc. Nat. Acad. Sci. US Am. 113, E4367–E4376 (2016)

    Article  Google Scholar 

  4. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences. 10, 424–430 (2006)

    Google Scholar 

  5. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45, S199–S209 (2009)

    Article  Google Scholar 

  6. Dosenbach, N.U.F., et al.: Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010)

    Article  Google Scholar 

  7. Mwangi, B., Tian, T.S., Soares, J.C.: A review of feature reduction techniques in neuroimaging. Neuroinformatics 12(2), 229–244 (2013)

    Article  Google Scholar 

  8. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  9. Hua, J., Tembe, W.D., Dougherty, E.R.: Performance of feature-selection methods in the classification of high-dimension data. Pattern Recogn. 42, 409–424 (2009)

    Article  Google Scholar 

  10. Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44, 112–122 (2009)

    Article  Google Scholar 

  11. Wager, T.D., Atlas, L.Y., Lindquist, M.A., Roy, M., Woo, C.W., Kross, E.: An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013)

    Article  Google Scholar 

  12. Teipel, S.J., Kurth, J., Krause, B., Grothe, M.J.: The relative importance of imaging markers for the prediction of Alzheimer’s disease dementia in mild cognitive impairment - beyond classical regression. NeuroImage Clin. 8, 583–593 (2015)

    Article  Google Scholar 

  13. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Zou, H., Zhang, H.H.: On the adaptive elastic-net with a diverging number of parameters. Ann. Stat. 37, 1733–1751 (2009)

    Article  MathSciNet  Google Scholar 

  15. Cui, Z., Gong, G.: The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. NeuroImage 178, 622–637 (2018)

    Article  Google Scholar 

  16. Haynes, J.D.: A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 87, 257–270 (2015)

    Article  Google Scholar 

  17. Jollans, L., et al.: Quantifying performance of machine learning methods for neuroimaging data. NeuroImage 199, 351–365 (2019)

    Article  Google Scholar 

  18. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)

    Article  Google Scholar 

  19. Jolliffe, I.T.: Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science (2002)

    Google Scholar 

  20. Mourão-Miranda, J., Bokde, A.L.W., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage 40, 1533–1541 (2005)

    Google Scholar 

  21. Calhoun, V.D., Adali, T.: Unmixing fMRI with independent component analysis. IEEE Eng. Med. Biol. Mag. 25, 79–90 (2006)

    Article  Google Scholar 

  22. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13, 411–430 (2000)

    Article  Google Scholar 

  23. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ACM International Conference Proceeding Series, pp. 689–696 (2009)

    Google Scholar 

  24. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

    Google Scholar 

  25. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52, 155–173 (2007)

    Article  MathSciNet  Google Scholar 

  26. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics (2009)

    Google Scholar 

  27. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010)

    Article  Google Scholar 

  28. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  29. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Chauhan, S., Vig, L., de Filippo De Grazia, M., Corbetta, M., Ahmad, S., Zorzi, M.: A comparison of shallow and deep learning methods for predicting cognitive performance of stroke patients from MRI lesion images. Front. Neuroinform. 13, 53 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Italian Ministry of Health (RF-2013-02359306 to MZ, Ricerca Corrente to IRCCS Ospedale San Camillo) and by MIUR (Dipartimenti di Eccellenza DM 11/05/2017 n. 262 to the Department of General Psychology). We are grateful to Prof. Maurizio Corbetta for providing the stroke dataset, which was collected in a study funded by grants R01 HD061117-05 and R01 NS095741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zorzi .

Editor information

Editors and Affiliations

Appendix

Appendix

The extracted features are sorted in descending order based on the absolute coefficient value. Regression coefficients and the first 6 features are displayed for each dimensionality reduction method (Fig. 4, 5, 6, 7 and 8).

Fig. 4.
figure 4

Regression coefficients for each model. Black stars represent coefficients = 0.

Fig. 5.
figure 5

The 6 features associated to the highest regression coefficients in the PCA-based model.

Fig. 6.
figure 6

The 6 features associated to the highest regression coefficients in the ICA-based model.

Fig. 7.
figure 7

The 6 features associated to the highest regression coefficients in the DL-based model.

Fig. 8.
figure 8

The 6 features associated to the highest regression coefficients in the NNMF-based model.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calesella, F., Testolin, A., De Filippo De Grazia, M., Zorzi, M. (2020). A Systematic Assessment of Feature Extraction Methods for Robust Prediction of Neuropsychological Scores from Functional Connectivity Data. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics