Skip to main content

Behavioral Signal Processing with Machine Learning Based on FPGA

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1273))

Abstract

This paper focuses on analyzing health problems derived from a sedentary lifestyle. Studies seeking to improve physical activity have shown that a good incentive to increase physical activity requires social feedback, allowing the subject to keep motivated and competitive, along with a feedback of number of steps at the end of the day. This work describes the training and implementation of a neural network as an artificial intelligence model to predict the behavior of an individual, taking advantage of the flexibility provided by Field Programmable Gate Arrays (FPGAs). We propose the design of an edge computing system, analyzing the efficiency on power, area and computational performance. The results are presented through a display, making a comparison of the predicted and expected steps.

Supported by Escuela Superior Politécnica del Litoral (ESPOL) and National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization, WHO.: Physical activity, February 2018. https://www.who.int/es/news-room/fact-sheets/detail/physical-activity. Accessed 6 Apr 2020

  2. Bauer, U.E., Briss, P.A., Goodman, R.A., Bowman, B.A.: Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. Lancet 384(9937), 45–52 (2014). https://doi.org/10.1016/S0140-6736(14)60648-6

    Article  Google Scholar 

  3. Freigoun, M.T., Martín, C.A., Magann, A.B., Rivera, D.E., Phatak, S.S., Korinek, E.V., Hekler, E.B.: System identification of just walk: a behavioral mHealth intervention for promoting physical activity. In: 2017 American Control Conference (ACC), pp. 116-121 (2017). https://doi.org/10.23919/ACC.2017.7962940

  4. Richardson, C.R., Newton, T.L., Abraham, J.J., Sen, A., Jimbo, M., Swartz, A.M.: A meta-analysis of pedometer-based walking interventions and weight loss. Ann. Fam. Med. 6, 69–77 (2008). https://doi.org/10.1370/afm.761

    Article  Google Scholar 

  5. Narayanan, S., Georgiou, P.: Behavioral signal processing: deriving human behavioral informatics from speech and language. In: Proceedings of the IEEE Institute of Electrical and Electronics Engineers, vol. 101(5), pp. 1203-1205 (2013). https://doi.org/10.1109/JPROC.2012.2236291

  6. Fujiki, Y., Kazakos, K., Puri, C., Starren, J., Pavlidis, I., Levine, J.: NEAT-o-games: ubiquitous activity-based gaming. In: Proceedings of the 2007 ACM Conference on Human Factors in Computing Systems (CHI), pp. 2369-2374. ACM Press (2007). https://doi.org/10.1145/1240866.1241009

  7. Asanza, V., Martin, C.A., Eslambolchilar, P., van Woerden, H., Cajo, R., Salazar, C.: Finding a dynamical model of a social norm physical activity intervention. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, pp. 1–6 (2017). https://doi.org/10.1109/ETCM.2017.8247450

  8. Bandura, A.: Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall series in social learning theory. Prentice-Hall, Upper Saddle River (1986)

    Google Scholar 

  9. Martín, C.A., Rivera, D.E., Riley, W.T., Hekler, E.B., Buman, M.P., Adams, M.A., King, A.C.: A dynamical systems model of social cognitive theory. In: Proceedings of the American Control Conference, pp. 2407–2412 (2014). https://doi.org/10.1109/ACC.2014.6859463

  10. Nagarajan, K., Holland, B., George, A.D., Clint, K., Lam, H.: accelerating machine-learning algorithms on FPGAs using pattern-based decomposition. J. Sign. Process. Syst. 62, 271–350 (2011). https://doi.org/10.1007/s11265-008-0337-9

    Article  Google Scholar 

  11. Harries, T., Eslambolchilar, P., Rettie, R., et al.: Effectiveness of a smartphone app in increasing physical activity amongst male adults: a randomised controlled trial. BMC Public Health 16(925), 1–10 (2016). https://doi.org/10.1186/s12889-016-3593-9

    Article  Google Scholar 

  12. Vachhani, L., Sridharan, K.: Hardware-efficient prediction-correction-based generalized-Voronoi-diagram construction and FPGA implementation. IEEE Trans. Ind. Electron. 55(4), 1558–1569 (2008). https://doi.org/10.1109/TIE.2008.917161

    Article  Google Scholar 

  13. Rixen, M., Ferreira-Coelho, E., Signell, R.: Surface drift prediction in the Adriatic sea using hyper-ensemble statistics on atmospheric, ocean and wave models: uncertainties and probability distribution areas. J. Mar. Syst. 69(1–2), 86–98 (2008). https://doi.org/10.1016/j.jmarsys.2007.02.015

    Article  Google Scholar 

  14. Kanawaday, A., Sane, A.: Machine learning for predictive maintenance of industrial machines using IOT sensor data. In: 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 87-90. IEEE (2017). https://doi.org/10.1109/ICSESS.2017.8342870

  15. Azorín, J., Saval, M., Fuster, A., Oliver, A.: A predictive model for recognizing human behaviour based on trajectory representation. In: International Joint Conference on Neural Networks (IJCNN), Beijing, pp. 1494–1501 (2014). https://doi.org/10.1109/IJCNN.2014.6889883

  16. Pentland, A., Liu, A.: Modeling and prediction of human behavior. Neural Comput. 11(1), 229–242 (1999). https://doi.org/10.1162/089976699300016890

    Article  Google Scholar 

  17. Khan, A., Lawo, M., Homer, P.: Wearable recognition system for physical activities. In: 9th International Conference on Intelligent Environments, Athens, pp. 245–249 (2013). https://doi.org/10.1109/IE.2013.50

  18. Tirkaz, C., Bruckner, D., Yin, G.Q., Haase, J.: Activity recognition using a hierarchical model. In: IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, pp. 2814–2820 (2012)

    Google Scholar 

  19. Santhiranayagam, B.K., Lai, D.T., Jiang, C., Shilton, A., Begg, R.: Automatic detection of different walking conditions using inertial sensor data. In: the 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2012). https://doi.org/10.1109/IJCNN.2012.6252501

  20. Upegui, A., Peña, C., Sanchez, E.: An FPGA platform for on-line topology exploration of spiking neural networks. Microprocess. Microsyst. 29(5), 211–223 (2005). https://doi.org/10.1016/j.micpro.2004.08.012

    Article  Google Scholar 

  21. Lacey, G., Taylor, G., Areibi, S.: Deep learning on FPGAs: Past, present, and future. arXiv preprint arXiv:1602.04283 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Asanza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asanza, V., Sanchez, G., Cajo, R., Peláez, E. (2021). Behavioral Signal Processing with Machine Learning Based on FPGA. In: Botto-Tobar, M., Zamora, W., Larrea Plúa, J., Bazurto Roldan, J., Santamaría Philco, A. (eds) Systems and Information Sciences. ICCIS 2020. Advances in Intelligent Systems and Computing, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-59194-6_17

Download citation

Publish with us

Policies and ethics