Advertisement

Performance Evaluation of Selected 3D Keypoint Detector–Descriptor Combinations

Conference paper
  • 226 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12334)

Abstract

Nowadays, with easily accessible 3D point cloud acquisition tools, the field of point cloud processing gained a lot of attention. Extracting features from 3D data became main computer vision task. In this paper, we reviewed methods of extracting local features from objects represented by point clouds. The goal of the work was to make theoretical overview and evaluation of selected point cloud detectors and descriptors. We performed an experimental assessment of the repeatability and computational efficiency of individual methods using the well known Stanford 3D Scanning Repository database with the aim of identifying a method which is computationally-efficient in finding good corresponding points between two point clouds. We combine the detectors with several feature descriptors and show which combination of detector and descriptor is suitable for object recognition task in cluttered scenes. Our tests show that choosing the right detector impacts the descriptor’s performance in the recognition process. The repeatability tests of the detectors show that the data which contained occlusions have a high impact on their performance. We summarized the results into graphs and described them with respect to the individual tested properties of the methods.

Keywords

3D detector 3D descriptor Point cloud Feature extraction 

Notes

Acknowledgment

This work has been funded by Slovak Ministry of Education under contract VEGA 1/0796/00 and by the Charles University grant SVV-260588.

References

  1. 1.
    Azimi, S., Lall, B., Gandhi, T.K.: Performance evalution of 3D keypoint detectors and descriptors for plants health classification. In: 2019 16th International Conference on Machine Vision Applications (MVA), pp. 1–6. IEEE (2019)Google Scholar
  2. 2.
    Belongie, S., Mori, G., Malik, J.: Matching with shape contexts. In: Krim, H., Yezzi, A. (eds.) Statistics and Analysis of Shapes, pp. 81–105. Springer, Heidelberg (2006).  https://doi.org/10.1007/0-8176-4481-4_4CrossRefGoogle Scholar
  3. 3.
    Bold, N., Zhang, C., Akashi, T.: 3D point cloud retrieval with bidirectional feature match. IEEE Access 7, 164194–164202 (2019)CrossRefGoogle Scholar
  4. 4.
    Deng, H., Birdal, T., Ilic, S.: PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 620–638. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01228-1_37CrossRefGoogle Scholar
  5. 5.
    Deng, H., Birdal, T., Ilic, S.: PPFNet: global context aware local features for robust 3D point matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 195–205 (2018)Google Scholar
  6. 6.
    Deng, H., Birdal, T., Ilic, S.: 3D local features for direct pairwise registration. In: Computer Vision and Pattern Recognition (CVPR). IEEE (2019)Google Scholar
  7. 7.
    Filipe, S., Alexandre, L.A.: A comparative evaluation of 3D keypoint detectors in a RGB-D object dataset. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 1, pp. 476–483. IEEE (2014)Google Scholar
  8. 8.
    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24672-5_18CrossRefGoogle Scholar
  9. 9.
    Guerrero, P., Kleiman, Y., Ovsjanikov, M., Mitra, N.J.: PCPNet learning local shape properties from raw point clouds. In: Computer Graphics Forum, vol. 37, pp. 75–85. Wiley Online Library (2018)Google Scholar
  10. 10.
    Hänsch, R., Weber, T., Hellwich, O.: Comparison of 3D interest point detectors and descriptors for point cloud fusion. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2(3), 57 (2014)CrossRefGoogle Scholar
  11. 11.
    Harris, C.G., Stephens, M., et al.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 23.1–23.6 (1988)Google Scholar
  12. 12.
    Levoy, M., Gerth, J., Curless, B., Pull, K.: The Stanford 3D scanning repository (2005). http://www-graphics.stanford.edu/data/3Dscanrep
  13. 13.
    Li, J., Chen, B.M., Lee, G.H.: SO-Net: Self-organizing network for point cloud analysis. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9397–9406, June 2018Google Scholar
  14. 14.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  15. 15.
    Markuš, N., Pandžić, I., Ahlberg, J.: Learning local descriptors by optimizing the keypoint-correspondence criterion: applications to face matching, learning from unlabeled videos and 3D-shape retrieval. IEEE Trans. Image Process. 28(1), 279–290 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010).  https://doi.org/10.1007/s11263-009-0296-zCrossRefGoogle Scholar
  17. 17.
    Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5099–5108. Curran Associates, Inc. (2017)Google Scholar
  18. 18.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217. IEEE (2009)Google Scholar
  19. 19.
    Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,. pp. 3384–3391. IEEE (2008)Google Scholar
  20. 20.
    Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011Google Scholar
  21. 21.
    Salti, S., Tombari, F., Di Stefano, L.: SHOT: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)CrossRefGoogle Scholar
  22. 22.
    Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 27(11), 963 (2011).  https://doi.org/10.1007/s00371-011-0610-yCrossRefGoogle Scholar
  23. 23.
    Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: Point feature extraction on 3D range scans taking into account object boundaries. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2601–2608. IEEE (2011)Google Scholar
  24. 24.
    Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3D data description. In: Proceedings of the ACM Workshop on 3D Object Retrieval, pp. 57–62 (2010)Google Scholar
  25. 25.
    Tombari, F., Salti, S., di Stefano, L.: Performance evaluation of 3D keypoint detectors. Int. J. Comput. Vis. 102(1–3), 198–220 (2013).  https://doi.org/10.1007/s11263-012-0545-4CrossRefGoogle Scholar
  26. 26.
    Vargas, J., Garcia, A., Oprea, S., Escolano, S., Rodriguez, J.: Object recognition pipeline: Grasping in domestic environments, pp. 18–33. IGI Global (2018)Google Scholar
  27. 27.
    Yew, Z.J., Lee, G.H.: 3DFeat-Net: weakly supervised local 3D features for point cloud registration. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 630–646. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01267-0_37CrossRefGoogle Scholar
  28. 28.
    Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3D object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–696. IEEE (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mathematics, Physics and InformaticsComenius University in BratislavaBratislavaSlovakia
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations