Identification and Quantification of Hazardous Scenarios for Automated Driving

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12297)


We present an integrated method for safety assessment of automated driving systems which covers the aspects of functional safety and safety of the intended functionality (SOTIF), including identification and quantification of hazardous scenarios. The proposed method uses and combines established exploration and analytical tools for hazard analysis and risk assessment in the automotive domain, while adding important enhancements to enable their applicability to the uncharted territory of safety analyses for automated driving. The method is tailored to support existing safety processes mandated by the standards ISO 26262 and ISO/PAS 21448 and complements them where necessary. It has been developed in close cooperation with major German automotive manufacturers and suppliers within the PEGASUS project ( Practical evaluation has been carried out by applying the method to the PEGASUS Highway-Chauffeur, a conceptual automated driving function considered as a common reference system within the project.


Automated driving Hazard analysis Risk assessment SOTIF Scenario identification Environmental triggers 


  1. 1.
    Abdulkhaleq, A., Baumeister, M., Böhmert, H., Wagner, S.: Missing no Interaction - using STPA for identifying hazardous interactions of automated driving systems. Int. J. Saf. Sci. 02, 115–124 (2018)CrossRefGoogle Scholar
  2. 2.
    Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)CrossRefGoogle Scholar
  3. 3.
    Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1813–1820 (2018)Google Scholar
  4. 4.
    Bagschik, G., Reschka, A., Stolte, T., Maurer, M.: Identification of potential hazardous events for an Unmanned Protective Vehicle. In: IEEE Intelligent Vehicles Symposium (IV), pp. 691–697 (2016)Google Scholar
  5. 5.
    Böde, E., et al.: Identifikation und Quantifizierung von Automationsrisiken für hochautomatisierte Fahrfunktionen. Tech. report, OFFIS e.V. (2019)Google Scholar
  6. 6.
    International Electrotechnical Commission, International Electrotechnical Technical Commission, et al.: Hazard and operability studies (HAZOP Studies)-Application guide. BS IEC 61882 (2001)Google Scholar
  7. 7.
    S.I.S. Committee, et al.: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne System and Equipment. SAE International (1996).
  8. 8.
    Damm, W., Möhlmann, E., Peikenkamp, T., Rakow, A.: A formal semantics for traffic sequence charts. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.) Principles of Modeling. LNCS, vol. 10760, pp. 182–205. Springer, Cham (2018). Scholar
  9. 9.
    ISO: ISO 26262:2018: Road vehicles - Functional safety (2018)Google Scholar
  10. 10.
    ISO: ISO/PAS 21448: Road vehicles - Safety of the intended functionality (2019)Google Scholar
  11. 11.
    Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Pol. Pract. 94, 182–193 (2016)Google Scholar
  12. 12.
    Leveson, N.G.: STAMP: an accident model based on systems theory. In: Systems Thinking Applied to Safety, Engineering a Safer World (2012)Google Scholar
  13. 13.
    Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and validation of automated vehicles. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1821–1827. IEEE (2018)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    Reschka, A.: Fertigkeiten-und Fähigkeitengraphen als Grundlage des sicheren Betriebs von automatisierten Fahrzeugen im öffentlichen Straßenverkehr in städtischer Umgebung. Ph.D. thesis, TU Braunschweig (2017)Google Scholar
  17. 17.
    SAE, T.: Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems. J3016, SAE International Standard (2014)Google Scholar
  18. 18.
    Steck, J.: Methodological Approach to Identify Automation Risks of Highly Automated Vehicles Using STPA. Technische Universität München, Masterarbeit (2018)Google Scholar
  19. 19.
    Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 982–988. IEEE (2015)Google Scholar
  20. 20.
    Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook. Tech. report Nuclear Regulatory Commission Washington DC (1981)Google Scholar
  21. 21.
    Yan, F., Tang, T., Yan, H.: Scenario based STPA analysis in Automated Urban Guided Transport system. In: 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT), pp. 425–431 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.OFFISOldenburgGermany
  2. 2.BTC Embedded SystemsOldenburgGermany

Personalised recommendations