Skip to main content

Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy

  • Chapter
  • First Online:
Bio-Nanomedicine for Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1295))

Abstract

Mesoporous silica nanoparticles (MSNs) offer many advantageous properties for applications in the field of nanobiotechnology. Loading of small molecules into MSNs is straightforward and widely applied, but with the upswing of both research and commercial interest in biological drugs in recent years, also biomacromolecules have been loaded into MSNs for delivery purposes. MSNs possess many critical properties making them a promising and versatile carrier for biomacromolecular delivery. In this chapter, we review the effects of the various structural parameters of MSNs on the effective loading of biomacromolecular therapeutics, with focus on maintaining stability and drug delivery performance. We also emphasize recent studies involving the use of MSNs in the delivery of biomacromolecular drugs, especially for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benezra, M., Penate-Medina, O., Zanzonico, P. B., Schaer, D., Ow, H., Burns, A., et al. (2011). Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. The Journal of Clinical Investigation, 121(7), 2768–2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, F., Goel, S., Shi, S., Barnhart, T. E., Lan, X., & Cai, W. (2018). General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Research, 11(9), 4890–4904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi, Y. H., & Han, H. K. (2018). Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. Journal of Pharmaceutical Investigation, 48(1), 43–60.

    Article  CAS  PubMed  Google Scholar 

  4. Huang, M., Liu, L., Wang, S., Zhu, H., Wu, D., Yu, Z., et al. (2017). Dendritic mesoporous silica nanospheres synthesized by a novel dual-templating micelle system for the preparation of functional nanomaterials. Langmuir, 33(2), 519–526.

    Article  CAS  PubMed  Google Scholar 

  5. Zhan, Z., Zhang, X., Huang, J., Huang, Y., Huang, Z., Pan, X., et al. (2017). Improved gene transfer with functionalized hollow mesoporous silica nanoparticles of reduced cytotoxicity. Materials (Basel), 10(7), 731.

    Article  CAS  Google Scholar 

  6. Xu, W., Ge, P., Niu, B., Zhang, X., Liu, J., & Xie, J. (2018). Macroporous silica nanoparticles for delivering Bcl2-function converting peptide to treat multidrug resistant-cancer cells. Journal of Colloid and Interface Science, 527, 141–150.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, B., Liu, Q., Liu, M., Shi, P., Zhu, L., Zhang, L., et al. (2019). Biodegradable hybrid mesoporous silica nanoparticles for gene/chemo-synergetic therapy of breast cancer. Journal of Biomaterials Applications, 33(10), 1382–1393.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, C., Tang, W., Jiang, D., Yang, G., Wang, X., Zhou, L., et al. (2019). Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale, 11(22), 11012–11024.

    Article  CAS  PubMed  Google Scholar 

  9. Yu, L., Chen, Y., Lin, H., Gao, S., Chen, H., & Shi, J. (2018). Magnesium-engineered silica framework for pH-accelerated biodegradation and DNAzyme-triggered chemotherapy. Small, 14(35), e1800708.

    Article  PubMed  CAS  Google Scholar 

  10. Kao, K.-C., Lin, T.-S., & Mou, C.-Y. (2014). Enhanced activity and stability of lysozyme by immobilization in the matching nanochannels of mesoporous silica nanoparticles. The Journal of Physical Chemistry C, 118(13), 6734–6743.

    Article  CAS  Google Scholar 

  11. Niu, D., Liu, Z., Li, Y., Luo, X., Zhang, J., Gong, J., et al. (2014). Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery. Advanced Materials, 26(29), 4947–4953.

    Article  CAS  PubMed  Google Scholar 

  12. Saikia, D., Deka, J. R., Wu, C. E., Yang, Y. C., & Kao, H. M. (2019). pH responsive selective protein adsorption by carboxylic acid functionalized large pore mesoporous silica nanoparticles SBA-1. Materials Science & Engineering. C, Materials for Biological Applications, 94, 344–356.

    Article  CAS  Google Scholar 

  13. Siefker, J., Karande, P., & Coppens, M.-O. (2014). Packaging biological cargoes in mesoporous materials: Opportunities for drug delivery. Expert Opinion on Drug Delivery, 11(11), 1781–1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kruk, M. (2012). Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates. Accounts of Chemical Research, 45(10), 1678–1687.

    Article  CAS  PubMed  Google Scholar 

  15. Bukara, K., Schueller, L., Rosier, J., Martens, M. A., Daems, T., Verheyden, L., et al. (2016). Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: Proof of concept in man. European Journal of Pharmaceutics and Biopharmaceutics, 108, 220–225.

    Article  CAS  PubMed  Google Scholar 

  16. Xiong, L., Bi, J., Tang, Y., & Qiao, S. Z. (2016). Magnetic core-shell silica nanoparticles with large radial mesopores for siRNA delivery. Small, 12(34), 4735–4742.

    Article  CAS  PubMed  Google Scholar 

  17. Gu, J., Huang, K., Zhu, X., Li, Y., Wei, J., Zhao, W., et al. (2013). Sub-150 nm mesoporous silica nanoparticles with tunable pore sizes and well-ordered mesostructure for protein encapsulation. Journal of Colloid and Interface Science, 407, 236–242.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, M., Meng, Q., Chen, Y., Zhang, L., Li, M., Cai, X., et al. (2016). Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Advanced Materials, 28(10), 1963–1969.

    Article  CAS  PubMed  Google Scholar 

  19. Meka, A. K., Abbaraju, P. L., Song, H., Xu, C., Zhang, J., Zhang, H., et al. (2016). A vesicle supra-assembly approach to synthesize amine-functionalized hollow dendritic mesoporous silica nanospheres for protein delivery. Small, 12(37), 5169–5177.

    Article  CAS  PubMed  Google Scholar 

  20. Rahmani, S., Budimir, J., Sejalon, M., Daurat, M., Aggad, D., Vives, E., et al. (2019). Large pore mesoporous silica and organosilica nanoparticles for pepstatin A delivery in breast cancer cells. Molecules, 24(2), 332.

    Article  PubMed Central  CAS  Google Scholar 

  21. Kwon, D., Cha, B. G., Cho, Y., Min, J., Park, E. B., Kang, S. J., et al. (2017). Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Letters, 17(5), 2747–2756.

    Article  CAS  PubMed  Google Scholar 

  22. Cha, B. G., Jeong, J. H., & Kim, J. (2018). Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Central Science, 4(4), 484–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, J., Li, X., Rosenholm, J. M., & Gu, H. C. (2011). Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 361(1), 16–24.

    Article  CAS  PubMed  Google Scholar 

  24. Hong, Y., Yao, Y., Zhao, H., Sheng, Q., Ye, M., Yu, C., et al. (2018). Dendritic mesoporous silica nanoparticles with abundant Ti(4+) for phosphopeptide enrichment from cancer cells with 96% specificity. Analytical Chemistry, 90(12), 7617–7625.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y., & Caruso, F. (2005). Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chemistry of Materials, 17(5), 953–961.

    Article  CAS  Google Scholar 

  26. Kalantari, M., Yu, M., Yang, Y., Strounina, E., Gu, Z., Huang, X., et al. (2017). Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Research, 10(2), 605–617.

    Article  CAS  Google Scholar 

  27. Yang, J., Tu, J., Lamers, G. E. M., Olsthoorn, R. C. L., & Kros, A. (2017). Membrane fusion mediated intracellular delivery of lipid bilayer coated mesoporous silica nanoparticles. Advanced Healthcare Materials, 6(20), 1700759.

    Article  CAS  Google Scholar 

  28. Slowing, I. I., Trewyn, B. G., & Lin, V. S. (2007). Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Journal of the American Chemical Society, 129(28), 8845–8849.

    Article  CAS  PubMed  Google Scholar 

  29. Hartono, S. B., Gu, W., Kleitz, F., Liu, J., He, L., Middelberg, A. P., et al. (2012). Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano, 6(3), 2104–2117.

    Article  CAS  PubMed  Google Scholar 

  30. Gao, F., Botella, P., Corma, A., Blesa, J., & Dong, L. (2009). Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. The Journal of Physical Chemistry B, 113(6), 1796–1804.

    Article  CAS  PubMed  Google Scholar 

  31. Xie, J., Yang, C., Liu, Q., Li, J., Liang, R., Shen, C., et al. (2017). Encapsulation of hydrophilic and hydrophobic peptides into hollow mesoporous silica nanoparticles for enhancement of antitumor immune response. Small, 13(40), 1701741.

    Article  CAS  Google Scholar 

  32. Wu, M., Meng, Q., Chen, Y., Du, Y., Zhang, L., Li, Y., et al. (2015). Large-pore ultrasmall mesoporous organosilica nanoparticles: Micelle/precursor co-templating assembly and nuclear-targeted gene delivery. Advanced Materials, 27(2), 215–222.

    Article  CAS  PubMed  Google Scholar 

  33. Hartono, S. B., Yu, M., Gu, W., Yang, J., Strounina, E., Wang, X., et al. (2014). Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers. Nanotechnology, 25(5), 055701.

    Article  PubMed  CAS  Google Scholar 

  34. Zheng, Q., Lin, T., Wu, H., Guo, L., Ye, P., Hao, Y., et al. (2014). Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. International Journal of Pharmaceutics, 463(1), 22–26.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, H. J., & Xu, P. (2019). Smart mesoporous silica nanoparticles for protein delivery. Nanomaterials (Basel), 9(4), 511.

    Article  CAS  PubMed Central  Google Scholar 

  36. Qiao, H., Jia, J., Shen, H., Zhao, S., Chen, E., Chen, W., et al. (2019). Capping silica nanoparticles with tryptophan-mediated cucurbit[8]uril complex for targeted intracellular drug delivery triggered by tumor-overexpressed IDO1 enzyme. Advanced Healthcare Materials, 8(13), e1900174.

    Article  PubMed  CAS  Google Scholar 

  37. Li, E., Yang, Y., Hao, G., Yi, X., Zhang, S., Pan, Y., et al. (2018). Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nano, 2(3), 233–242.

    Google Scholar 

  38. Portilho, F. L., Pinto, S. R., de Barros, A., Helal-Neto, E., Dos Santos, S. N., Bernardes, E. S., et al. (2018). In loco retention effect of magnetic core mesoporous silica nanoparticles doped with trastuzumab as intralesional nanodrug for breast cancer. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S725–SS33.

    Article  CAS  PubMed  Google Scholar 

  39. Siminzar, P., Omidi, Y., Golchin, A., Aghanejad, A., & Barar, J. (2019). Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer. Journal of Drug Targeting, 28(1), 92–101..

    Google Scholar 

  40. Sakhtianchi, R., Darvishi, B., Mirzaie, Z., Dorkoosh, F., Shanehsazzadeh, S., & Dinarvand, R. (2019). Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 Aptamer as a targeting delivery system for cytotoxic agents. Pharmaceutical Development and Technology, 24(9), 1063–1075.

    Article  CAS  PubMed  Google Scholar 

  41. Li, X., Fan, H., Guo, T., Bai, H., Kwon, N., Kim, K. H., et al. (2019). Sequential protein-responsive nanophotosensitizer complex for enhancing tumor-specific therapy. ACS Nano, 13(6), 6702–6710.

    Article  CAS  PubMed  Google Scholar 

  42. Er, O., Colak, S. G., Ocakoglu, K., Ince, M., Bresoli-Obach, R., Mora, M., et al. (2018). Selective photokilling of human pancreatic cancer cells using cetuximab-targeted mesoporous silica nanoparticles for delivery of zinc phthalocyanine. Molecules, 23(11), 2749.

    Article  PubMed Central  CAS  Google Scholar 

  43. Fang, J., Wang, Q., Yang, G., Xiao, X., Li, L., & Yu, T. (2019). Albumin-MnO2 gated hollow mesoporous silica nanosystem for modulating tumor hypoxia and synergetic therapy of cervical carcinoma. Colloids and surfaces B, Biointerfaces, 179, 250–259.

    Article  CAS  PubMed  Google Scholar 

  44. Paris, J. L., de la Torre, P., Cabanas, M. V., Manzano, M., Flores, A. I., & Vallet-Regi, M. (2019). Suicide-gene transfection of tumor-tropic placental stem cells employing ultrasound-responsive nanoparticles. Acta Biomaterialia, 83, 372–378.

    Article  CAS  PubMed  Google Scholar 

  45. Zahiri, M., Babaei, M., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2020). Hybrid nanoreservoirs based on dextran-capped dendritic mesoporous silica nanoparticles for CD133-targeted drug delivery. Journal of Cellular Physiology, 235(2), 1036–1050.

    Article  CAS  PubMed  Google Scholar 

  46. Shen, Y., Li, M., Liu, T., Liu, J., Xie, Y., Zhang, J., et al. (2019). A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. International Journal of Nanomedicine, 14, 4029–4044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, C. M., Chen, G. B., Chen, H. H., Zhang, J. B., Li, H. Z., Sheng, M. X., et al. (2019). Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids and surfaces B, Biointerfaces, 175, 477–486.

    Article  CAS  PubMed  Google Scholar 

  48. Kuang, Y., Chen, H., Chen, Z., Wan, L., Liu, J., Xu, Z., et al. (2019). Poly(amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy. Colloids and surfaces B, Biointerfaces, 181, 461–469.

    Article  CAS  PubMed  Google Scholar 

  49. Yang, X., Trinh, H. M., Agrahari, V., Sheng, Y., Pal, D., & Mitra, A. K. (2016). Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate. AAPS PharmSciTech, 17(2), 294–306.

    Article  CAS  PubMed  Google Scholar 

  50. Shao, D., Li, M., Wang, Z., Zheng, X., Lao, Y. H., Chang, Z., et al. (2018). Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Advanced Materials, 30, e1801198.

    Article  CAS  Google Scholar 

  51. Zhang, J., Shen, B., Chen, L., Chen, L., Meng, Y., & Feng, J. (2019). A dual-sensitive mesoporous silica nanoparticle based drug carrier for cancer synergetic therapy. Colloids and Surfaces B, Biointerfaces, 175, 65–72.

    Article  CAS  PubMed  Google Scholar 

  52. Jimenez-Falcao, S., Joga, N., Garcia-Fernandez, A., Llopis Lorente, A., Torres, D., de Luis, B., et al. (2019). Janus nanocarrier powered by bi-enzymatic cascade system for smart delivery. Journal of Materials Chemistry B, 7(30), 4669–4676.

    Article  CAS  PubMed  Google Scholar 

  53. Agostini, A., Mondragon, L., Pascual, L., Aznar, E., Coll, C., Martinez-Manez, R., et al. (2012). Design of enzyme-mediated controlled release systems based on silica mesoporous supports capped with ester-glycol groups. Langmuir, 28(41), 14766–14776.

    Article  CAS  PubMed  Google Scholar 

  54. Deodhar, G. V., Adams, M. L., & Trewyn, B. G. (2017). Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnology Journal, 12(1), 1600408.

    Article  CAS  Google Scholar 

  55. Xu, C., Lei, C., & Yu, C. (2019). Mesoporous silica nanoparticles for protein protection and delivery. Frontiers in Chemistry, 7, 290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tambe, P., Kumar, P., Paknikar, K. M., & Gajbhiye, V. (2018). Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. International Journal of Nanomedicine, 13, 7669–7680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhattacharyya, S., Wang, H., & Ducheyne, P. (2012). Polymer-coated mesoporous silica nanoparticles for the controlled release of macromolecules. Acta Biomaterialia, 8(9), 3429–3435.

    Article  CAS  PubMed  Google Scholar 

  58. Solberg, S. M., & Landry, C. C. (2006). Adsorption of DNA into mesoporous silica. The Journal of Physical Chemistry B, 110(31), 15261–15268.

    Article  CAS  PubMed  Google Scholar 

  59. Chang, J. H., Mou, K. Y., & Mou, C. Y. (2019). Sleeping beauty transposon-mediated asparaginase gene delivery by a nanoparticle platform. Scientific Reports, 9(1), 11457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nejabat, M., Mohammadi, M., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2018). Fabrication of acetylated carboxymethylcellulose coated hollow mesoporous silica hybrid nanoparticles for nucleolin targeted delivery to colon adenocarcinoma. Carbohydrate Polymers, 197, 157–166.

    Article  CAS  PubMed  Google Scholar 

  61. Pinese, C., Lin, J., Milbreta, U., Li, M., Wang, Y., Leong, K. W., et al. (2018). Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomaterialia, 76, 164–177.

    Article  CAS  PubMed  Google Scholar 

  62. Wang, D., Xu, X., Zhang, K., Sun, B., Wang, L., Meng, L., et al. (2018). Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment. International Journal of Nanomedicine, 13, 187–198.

    Article  CAS  PubMed  Google Scholar 

  63. Pan, Q. S., Chen, T. T., Nie, C. P., Yi, J. T., Liu, C., Hu, Y. L., et al. (2018). In situ synthesis of ultrathin ZIF-8 film-coated MSNs for codelivering Bcl 2 siRNA and doxorubicin to enhance chemotherapeutic efficacy in drug-resistant cancer cells. ACS Applied Materials & Interfaces, 10(39), 33070–33077.

    Article  CAS  Google Scholar 

  64. Li, Y., Duo, Y., Bi, J., Zeng, X., Mei, L., Bao, S., et al. (2018). Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. International Journal of Nanomedicine, 13, 1241–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu, Y., Wang, Z., Qiu, Y., Liu, Y., Ding, M., & Zhang, Y. (2019). Anti-miRNA21 and resveratrol-loaded polysaccharide-based mesoporous silica nanoparticle for synergistic activity in gastric carcinoma. Journal of Drug Targeting, 27(10), 1135–1143.

    Google Scholar 

  66. Yang, H., Liu, Y., Qiu, Y., Ding, M., & Zhang, Y. (2019). MiRNA-204-5p and oxaliplatin-loaded silica nanoparticles for enhanced tumor suppression effect in CD44-overexpressed colon adenocarcinoma. International Journal of Pharmaceutics, 566, 585–593.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, F., Zhang, L., Bai, X., Cao, X., Jiao, X., Huang, Y., et al. (2018). Stimuli-responsive nanocarrier for co-delivery of MiR-31 and doxorubicin to suppress high MtEF4 cancer. ACS Applied Materials & Interfaces, 10(26), 22767–22775.

    Article  CAS  Google Scholar 

  68. Joshi, V. B., Geary, S. M., & Salem, A. K. (2013). Biodegradable particles as vaccine delivery systems: Size matters. The AAPS Journal, 15(1), 85–94.

    Article  CAS  PubMed  Google Scholar 

  69. Slutter, B., & Jiskoot, W. (2016). Sizing the optimal dimensions of a vaccine delivery system: A particulate matter. Expert Opinion on Drug Delivery, 13(2), 167–170.

    Article  PubMed  CAS  Google Scholar 

  70. Mathaes, R., Winter, G., Siahaan, T. J., Besheer, A., & Engert, J. (2015). Influence of particle size, an elongated particle geometry, and adjuvants on dendritic cell activation. European Journal of Pharmaceutics and Biopharmaceutics, 94, 542–549.

    Article  CAS  PubMed  Google Scholar 

  71. Ding, D., & Zhu, Q. (2018). Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Materials Science & Engineering. C, Materials for Biological Applications, 92, 1041–1060.

    Article  CAS  Google Scholar 

  72. Lee, S. H., Park, O. K., Kim, J., Shin, K., Pack, C. G., Kim, K., et al. (2019). Deep tumor penetration of drug-loaded nanoparticles by click reaction-assisted immune cell targeting strategy. Journal of the American Chemical Society, 141(35), 13829–13840.

    Article  CAS  PubMed  Google Scholar 

  73. Ding, B., Shao, S., Yu, C., Teng, B., Wang, M., Cheng, Z., et al. (2018). Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Advanced Materials, 30(52), e1802479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica M. Rosenholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Küçüktürkmen, B., Rosenholm, J.M. (2021). Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. In: Fontana, F., Santos, H.A. (eds) Bio-Nanomedicine for Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-58174-9_5

Download citation

Publish with us

Policies and ethics