Skip to main content

Developing a Replication of a Wayfinding Study. From a Large-Scale Real Building to a Virtual Reality Simulation

  • Conference paper
  • First Online:
Spatial Cognition XII (Spatial Cognition 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12162))

Included in the following conference series:

Abstract

Developing virtual reality (VR) simulations for replication of real-world studies in spatial cognition research is a tedious process, as numerous processes must be considered to achieve correspondence. In this chapter, we describe the development of a virtual model for a replication of a real-world study in the Seattle Central Library. The aim is to pragmatically report challenges and solutions in translating real-world conditions of complex and large-scale buildings into virtual reality simulations. For this aim, the chapter focuses on three steps for development: modelling the virtual environment, optimizing the performance, and designing the human-environment interaction.

Author notes: The authors thank Dan Baird for supporting the development of signage for the VR model. The first author contributed to this chapter during a postdoc fellowship of the German Academic Exchange Service (DAAD), at the Future Cities Laboratory, Singapore-ETH Centre, which was established collaboratively between ETH Zurich and Singapore’s National Research Foundation (FI 370074016) under its Campus for Research Excellence and Technological Enterprise programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Readers who may wish to build upon the research discussed in this chapter may have access to alternative software, frameworks, data formats, etc. For instance, Maya and Blender are 3D modelling packages designed for animation and visual effects, whereas the native polygon modelling approach, texture mapping features, display functions, and the capability to support numerous file types and large-scale, detailed, and complex architectural models is well-established in 3Ds Max. However, the processes and guidelines discussed in this chapter would be relevant to most 3D modelling packages.

References

  1. Schneider, S., Kuliga, S., Weiser, R., Kammler, O., Fuchkina, E.: VREVAL - A BIM-based framework for user-centered evaluation of complex buildings in virtual environments. Proc. Ecaade 2018(36), 1–9 (2018)

    Google Scholar 

  2. Kuliga, S.: Evaluating user experience and wayfinding behaviour in complex, architectural environments – towards a user-centred approach of building usability, Doctoral dissertation, University of Freiburg (2016)

    Google Scholar 

  3. Franz, G.: An empirical approach to the experience of architectural space. Doctoral Dissertation, Max Planck Institute for Biological Cybernetics Tübingen and Bauhaus University Weimar, Germany, Logos-Verlag (2005)

    Google Scholar 

  4. Westerdahl, B., Suneson, K., Wernemyr, C., Roupé, M., Johansson, M., Allwood, C.M.: Users’ evaluation of a virtual reality architectural model compared with the experience of the completed building. Autom. Construct. 15(2), 150–165 (2006)

    Article  Google Scholar 

  5. Chamilothori, K., Wienold, J., Andersen, M.: Adequacy of immersive virtual reality for the perception of daylit spaces: comparison of real and virtual environments. Leukos 15(3), 203–226 (2019)

    Article  Google Scholar 

  6. de Kort, Y.A.D., Ijsselsteijn, W.A., Kooijman, J., Schuurmans, Y.: Virtual laboratories: comparability of real and virtual environments for environmental psychology. Presence: Teleoperators Virtual Environments, 12(4), 360–373 (2003)

    Google Scholar 

  7. Süzer, Ö.K., Olguntürk, N.: The aid of colour on visuospatial navigation of elderly people in a virtual polyclinic environment. Color Res. Appl. 43(6), 872–884 (2018)

    Article  Google Scholar 

  8. Kuliga, S.F., Thrash, T., Dalton, R.C., Hölscher, C.: Virtual reality as an empirical research tool—exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 54, 363–375 (2015)

    Article  Google Scholar 

  9. Lazaridou, A., Psarra, S.: Spatial navigation in real and virtual multi-level museums. In: Proceedings of the 11th International Space Syntax Symposium, pp. 14–21. Instituto Superior Tecnico (2017)

    Google Scholar 

  10. Li, H., Thrash, T., Hölscher, C., Schinazi, V.R.: The effect of crowdedness on human wayfinding and locomotion in a multi-level virtual shopping mall. J. Environ. Psychol. 65, 101320 (2019)

    Article  Google Scholar 

  11. Münzer, S., Zadeh, M.V.: Acquisition of spatial knowledge through self-directed interaction with a virtual model of a multi-level building: effects of training and individual differences. Comput. Hum. Behav. 64, 191–205 (2016)

    Article  Google Scholar 

  12. Andrée, K., Nilsson, D., Eriksson, J.: Evacuation experiments in a virtual reality high-rise building: exit choice and waiting time for evacuation elevators. Fire Mater. 40(4), 554–567 (2016)

    Article  Google Scholar 

  13. Kuliga, S.F., et al.: Exploring individual differences and building complexity in Wayfinding: the case of the seattle central library. Environ. Behav. 51(5), 622–665 (2019)

    Article  Google Scholar 

  14. Bielik, M., et al.: Examining trade-offs between social, psychological, and energy potential of urban form. ISPRS Int. J. Geo-Inf. 8(2), 52, 1–31 (2019)

    Google Scholar 

  15. Von Stuelpnagel, R., Kuliga, S., Büchner, S.J., Holscher, C.: Supra-individual consistencies in navigator-driven landmark placement for spatial learning. Proc. Ann. Meet. Cognitive Sci. Soc. 36, 1706–1711 (2014)

    Google Scholar 

  16. Langenfeld, V., Rist, M., Dalton, R.C., Hölscher, C.. What space syntax does not know: movement triggers beyond integration. In: Kim, Y.O., Park, H.T., Seo, K.W. (eds.) Proceedings of the 9th International Space Syntax Symposium, Seoul, South-Korea. Sejong University: Seoul, p. 076, 1–18 (2013)

    Google Scholar 

  17. Toet, A., Van Welie, M., Houtkamp, J.: Is a dark virtual environment scary? Cyberpsychol. Behav. 12(4), 363–371 (2009)

    Article  Google Scholar 

  18. Steinicke, F., Bruder, G., Hinrichs, K., Steed, A.: Gradual transitions and their effects on presence and distance estimation. Comput. Graph. 34, 26–33 (2010)

    Article  Google Scholar 

  19. Dalton, N., Dalton, R.C., Hölscher, C.: People watcher: an app to record and analyzing spatial behavior of ubiquitous interaction technologies. In: Gehring, S., Krüger, A. (eds.) Proceedings of the 4th International Symposium on Pervasive Displays, pp. 1–6 (2015)

    Google Scholar 

  20. Kuliga, S., Weiser, R., Falke, S., Schneider, S.: Nutzerzentrierte Gebäudeevaluation mittels Virtueller Realität. EI - Der Eisenbahningenieur: Internationale Fachzeitschrift für Schienenverkehr & Technik, 4/18, Verband Deutscher Eisenbahn-Ingenieure e.V. (VDEI), Frankfurt/Main, pp. 56–60 (2018)

    Google Scholar 

  21. Hölscher, C., Brösamle, M., Dalton, R.C.: On the role of spatial analysis in design synthesis: the case of wayfinding. NSF International Workshop on Studying Visual and Spatial Reasoning for Design Creativity (SDC 2010), pp. 1–5. France (2010)

    Google Scholar 

  22. Unity Tutorial. https://docs.unity3d.com/Manual. Accessed 31 Jan 2020

  23. Dubey, R.K., Kapadia, M., Thrash, T., Schinazi, V.R., Hoelscher, C.: Towards an information-theoretic framework for quantifying wayfinding information in virtual environments. In CAID@ IJCAI, pp. 40–46 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saskia Kuliga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuliga, S., Charlton, J., Rohaidi, H.F., Isaac, L.Q.Q., Hoelscher, C., Joos, M. (2020). Developing a Replication of a Wayfinding Study. From a Large-Scale Real Building to a Virtual Reality Simulation. In: Å Ä·ilters, J., Newcombe, N., Uttal, D. (eds) Spatial Cognition XII. Spatial Cognition 2020. Lecture Notes in Computer Science(), vol 12162. Springer, Cham. https://doi.org/10.1007/978-3-030-57983-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57983-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57982-1

  • Online ISBN: 978-3-030-57983-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics