Skip to main content

Quantitative OCT Reconstructions for Dispersive Media

  • Chapter
  • First Online:
Time-dependent Problems in Imaging and Parameter Identification

Abstract

We consider the problem of reconstructing the position and the time-dependent optical properties of a linear dispersive medium from OCT measurements. The medium is multi-layered described by a piecewise inhomogeneous refractive index. The measurement data are from a frequency-domain OCT system and we address also the phase retrieval problem. The parameter identification problem can be formulated as an one-dimensional inverse problem. Initially, we deal with a non-dispersive medium and we derive an iterative scheme that is the core of the algorithm for the frequency-dependent parameter. The case of absorbing medium is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  2. O. Bruno, J. Chaubell, One-dimensional inverse scattering problem for optical coherence tomography. Inverse Problems 21, 499–524 (2005)

    Article  MathSciNet  Google Scholar 

  3. W. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  4. W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology and Applications, 2nd edn. (Springer, Cham, 2015)

    Book  Google Scholar 

  5. P. Elbau, L. Mindrinos, O. Scherzer, Mathematical methods of optical coherence tomography, in Handbook of Mathematical Methods in Imaging. ed. by O. Scherzer (Springer New York, 2015), pp. 1169–1204

    Google Scholar 

  6. P. Elbau, L. Mindrinos, O. Scherzer, Inverse problems of combined photoacoustic and optical coherence tomography. Math. Methods Appl. Sci. 40(3), 505–522 (2017)

    Article  MathSciNet  Google Scholar 

  7. P. Elbau, L. Mindrinos, O. Scherzer, Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging. Inverse Problems 34(1), 014006 (2018)

    Google Scholar 

  8. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 2nd. edn. (American Mathematical Society, Providence, 2010)

    Google Scholar 

  9. A.F. Fercher, Optical coherence tomography. J. Biomed. Opt. 1(2), 157–173 (1996)

    Article  Google Scholar 

  10. A.F. Fercher, Optical coherence tomography - development, principles, applications. Z. Med. Phys. 20, 251–276 (2010)

    Article  Google Scholar 

  11. A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, In vivo Optical coherence tomography. Am. Shortjournal Ophthalmol. 116, 113–114 (1993)

    Article  Google Scholar 

  12. P. Grosse, V. Offermann, Analysis of reflectance data using the Kramers-Kronig relations. Appl. Phys. A 52(2), 138–144 (1991)

    Article  Google Scholar 

  13. E. Hecht, Optics, 4th edn. (Addison Wesley, Boston, 2002)

    Google Scholar 

  14. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)

    Article  Google Scholar 

  15. E. Hofstetter, Construction of time-limited functions with specified autocorrelation functions. IEEE Trans. Inf. Theory 10(2), 119–126 (1964)

    Article  Google Scholar 

  16. S.A.R. Horsley, M. Artoni, G.C. La Rocca, Spatial Kramers–Kronig relations and the reflection of waves. Nat. Photon. 9(7), 436 (2015)

    Google Scholar 

  17. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Am. Assoc. Adv. Sci. 254(5035), 1178–1181 (1991)

    Google Scholar 

  18. M.V. Klibanov, V.G. Kamburg, Uniqueness of a one-dimensional phase retrieval problem. Inverse Problems 30(7), 075004 (2014)

    Google Scholar 

  19. M.V. Klibanov, P.E. Sacks, A.V. Tikhonravov, The phase retrieval problem. Inverse Problems 11(1), 1–28 (1995)

    Article  MathSciNet  Google Scholar 

  20. A. Krishnaswamy, G.V. Baranoski, A Biophysically-based spectral model of light interaction with human skin. Comput. Graph. Forum 23(3), 331–340 (2004)

    Article  Google Scholar 

  21. R.A. Leitgeb, C.K. Hitzenberger, A.F. Fercher, T. Bajraszewski, Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt. Lett. 28(22), 2201–2203 (2003)

    Article  Google Scholar 

  22. V. Lucarini, J.J. Saarinen, K. Peiponen, E.M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research. Springer Series in Optical Sciences (Springer, Berlin 2005)

    Google Scholar 

  23. S. Mukherjee, C.S. Seelamantula, An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2012), pp. 553–556

    Google Scholar 

  24. K.F. Palmer, M.Z. Williams, B.A. Budde, Multiply subtractive Kramers–Kronig analysis of optical data. Appl. Opt. 37(13), 2660–2673 (1998)

    Article  Google Scholar 

  25. C.S. Seelamantula, S. Mulleti, Super-resolution reconstruction in frequency-domain optical-coherence tomography using the finite-rate-of-innovation principle. IEEE Trans. Signal Process. 62(19), 5020–5029 (2014)

    Article  MathSciNet  Google Scholar 

  26. C.S. Seelamantula, M.L. Villiger, R.A. Leitgeb, M. Unser, Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography. J. Opt. Soc. Am. A 25(7), 1762–1771 (2008)

    Article  Google Scholar 

  27. Y. Shechtman, Y.C. Eldar, O. Cohen, H.N. Chapman, J. Miao, M. Segev, Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)

    Article  Google Scholar 

  28. E. Somersalo, Layer stripping for time-harmonic Maxwell’s equations with high frequency. Inverse Problems 10(2), 449–466 (1994)

    Article  MathSciNet  Google Scholar 

  29. W.A. Strauss, Partial Differential Equations: An Introduction, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  30. E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)

    Article  Google Scholar 

  31. J. Sylvester, D. Winebrenner, F. Gylys-Colwell, Layer stripping for the Helmholtz equation. SIAM J. Appl. Math. 56(3), 736–754 (1996)

    Article  MathSciNet  Google Scholar 

  32. L. Thrane, H.T. Yura, P.E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens Fresnel principle. J. Opt. Soc. Am. A 17(3), 484–490 (2000)

    Article  Google Scholar 

  33. P.H. Tomlins, R.K. Wang, Theory developments and applications of optical coherence tomography. J. Phys. D Appl. Phys. 38, 2519–2535 (2005)

    Article  Google Scholar 

  34. P.H. Tomlins, R.K. Wang, Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23(8), 1897–1907 (2006)

    Article  Google Scholar 

  35. R.H. Young, Validity of the Kramers-Kronig transformation used in reflection spectroscopy. J. Opt. Soc. Am. 67(4), 520–523 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

The work of PE and LV was supported by the Austrian Science Fund (FWF) in the project F6804–N36 (Quantitative Coupled Physics Imaging) within the Special Research Programme SFB F68: “Tomography Across the Scales”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas Mindrinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elbau, P., Mindrinos, L., Veselka, L. (2021). Quantitative OCT Reconstructions for Dispersive Media. In: Kaltenbacher, B., Schuster, T., Wald, A. (eds) Time-dependent Problems in Imaging and Parameter Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-57784-1_8

Download citation

Publish with us

Policies and ethics