A Polynomial-Time Algorithm for Solving the Hidden Subset Sum Problem
- 831 Downloads
Abstract
At Crypto ’99, Nguyen and Stern described a lattice based algorithm for solving the hidden subset sum problem, a variant of the classical subset sum problem where the n weights are also hidden. While the Nguyen-Stern algorithm works quite well in practice for moderate values of n, we argue that its complexity is actually exponential in n; namely in the final step one must recover a very short basis of a n-dimensional lattice, which takes exponential-time in n, as one must apply BKZ reduction with increasingly large block-sizes.
In this paper, we describe a variant of the Nguyen-Stern algorithm that works in polynomial-time. The first step is the same orthogonal lattice attack with LLL as in the original algorithm. In the second step, instead of applying BKZ, we use a multivariate technique that recovers the short lattice vectors and finally the hidden secrets in polynomial time. Our algorithm works quite well in practice, as we can reach \(n \simeq 250\) in a few hours on a single PC.
References
- [Bab86]Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)MathSciNetCrossRefGoogle Scholar
- [BNNT11]Brier, É., Naccache, D., Nguyen, P.Q., Tibouchi, M.: Modulus fault attacks against RSA-CRT signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 192–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_13CrossRefGoogle Scholar
- [BPV98]Boyko, V., Peinado, M., Venkatesan, R.: Speeding up discrete log and factoring based schemes via precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054129CrossRefGoogle Scholar
- [CG20]Coron, J.-S., Gini, A.: A polynomial-time algorithm for solving the hidden subset sum problem. Full version of this paper. Cryptology ePrint Archive, Report 2020/461 (2020). https://eprint.iacr.org/2020/461
- [CJL+92]Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern, J.: Improved low-density subset sum algorithms. Comput. Complex. 2, 111–128 (1992)MathSciNetCrossRefGoogle Scholar
- [CKPS00]Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_27CrossRefGoogle Scholar
- [CLO05]Cox, D.A., Little, J., Oshea, D.: Using Algebraic Geometry. Springer, New York (2005). https://doi.org/10.1007/b138611CrossRefGoogle Scholar
- [CLT13]Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_26CrossRefGoogle Scholar
- [CN11]Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1CrossRefGoogle Scholar
- [CN19]Coron, J.-S., Notarnicola, L.: Cryptanalysis of CLT13 multilinear maps with independent slots. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 356–385. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_13CrossRefGoogle Scholar
- [CNT10]Coron, J.-S., Naccache, D., Tibouchi, M.: Fault attacks against emv signatures. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_15CrossRefGoogle Scholar
- [CP19]Coron, J.-S., Pereira, H.V.L.: On Kilian’s randomization of multilinear map encodings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 325–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_12CrossRefGoogle Scholar
- [FLLT15]Fouque, P.-A., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of the Co-ACD assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 561–580. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_27CrossRefGoogle Scholar
- [fpl16]The FPLLL development team. FPLLL, a lattice reduction library (2016). https://github.com/fplll/fplll
- [HPS11]Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_25CrossRefGoogle Scholar
- [LLL82]Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982). https://doi.org/10.1007/BF01457454MathSciNetCrossRefzbMATHGoogle Scholar
- [LO85]Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM 32(1), 229–246 (1985)MathSciNetCrossRefGoogle Scholar
- [LT15]Lepoint, T., Tibouchi, M.: Cryptanalysis of a (somewhat) additively homomorphic encryption scheme used in PIR. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 184–193. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_14CrossRefGoogle Scholar
- [NS97]Nguyen, P., Stern, J.: Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052236CrossRefGoogle Scholar
- [NS98a]Nguyen, P., Stern, J.: The Béguin-Quisquater server-aided RSA protocol from Crypto ’95 is not secure. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 372–379. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1_29CrossRefGoogle Scholar
- [NS98b]Nguyen, P., Stern, J.: Cryptanalysis of the Ajtai-Dwork cryptosystem. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055731CrossRefGoogle Scholar
- [NS99]Nguyen, P., Stern, J.: The hardness of the hidden subset sum problem and its cryptographic implications. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 31–46. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_3CrossRefGoogle Scholar
- [NS09]Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J. Comput. 39(3), 874–903 (2009)MathSciNetCrossRefGoogle Scholar
- [NSS04]Naccache, D., Smart, N.P., Stern, J.: Projective coordinates leak. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 257–267. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_16CrossRefGoogle Scholar
- [Sag19]The Sage Developers. Sagemath, the Sage Mathematics Software System (Version 8.9) (2019). https://www.sagemath.org
- [Sch87]Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)MathSciNetCrossRefGoogle Scholar
- [Sho]Shoup, V.: Number theory C++ library (NTL) version 3.6. http://www.shoup.net/ntl/
- [vDGHV10]van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2CrossRefGoogle Scholar