Skip to main content

Designing Biomimicking Synthetic Transcription Factors for Therapeutic Gene Modulation

  • Chapter
  • First Online:
Cell-Inspired Materials and Engineering

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 429 Accesses

Abstract

Inside living cells, natural transcription factors operate by precisely recognizing specific DNA sequences and by recruiting transcription ON/OFF epigenetic marks at a precise locus and time. Hence, designing synthetic transcription factors that mimic the programmable functionality of the biological transcription factors is complicated because of the need to integrate multiple functions onto a single molecular platform. Large-scale sequencing studies have been providing an enormous wealth of information about the critical DNA sequences and the transcription factors that coordinate the intricate transcription machinery in the natural cellular environment. Using this collected biological information, programmable DNA-binding natural proteins and small molecules have been developed to mimic and/or modulate transcription factors in a sequence-specific manner. Small-molecule transcription factor mimics operate to regulate gene expression inside living cells in a transgene-free and cost-effective manner. Hairpin pyrrole–imidazole polyamides (PIPs) are selective DNA-binding small molecules that can be preprogrammed to read specific DNA sequences. PIPs and their conjugates have been developed to mimic transcription factors regarding structure and function and generate epigenetic codes for gene regulation. In this chapter, we detail the progress of small-molecule-based transcription factor mimics and their prospects in therapeutic gene modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandian GN, Sugiyama H (2013) Strategies to modulate heritable epigenetic defects in cellular machinery: lessons from nature. Pharmaceuticals 2013(6):1–24

    Google Scholar 

  2. Watson JD (1990) The human genome project: past, present, and future. Science 248:44

    Article  CAS  PubMed  Google Scholar 

  3. Chin L, Anderson JN, Futrea PA (2011) Cancer genomics: from discovery science to personalized medicine. Nat Med 17:297–303

    Article  CAS  PubMed  Google Scholar 

  4. Pandian GN, Taniguchi J, Sugiyama H (2014) Cellular reprogramming for pancreatic β-cell regeneration: clinical potential of small molecule control. Clin Transl Med 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pandian GN, Syed J, Sugiyama H (2015) Synthetic strategies to identify and regulate noncoding RNAs. In: Long noncoding RNAs. Springer, Tokyo, pp 23–43. https://doi.org/10.1007/978-4-431-55576-6_2

    Chapter  Google Scholar 

  6. Pandian GN, Taylor RD, Junetha S, Saha A, Anandhakumar C, Vaijayanthi T, Sugiyama H (2014) Alteration of epigenetic program to recover memory and alleviate neurodegeneration: prospects of multi-target molecules. Biomater Sci 2:1043–1056

    Article  CAS  PubMed  Google Scholar 

  7. Masuda S, Wu J, Hishida T, Pandian GN, Sugiyama H, Belmonte JCI (2013) Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Mol Cell Biol 5:354–355

    Article  CAS  PubMed  Google Scholar 

  8. Wu YL, Pandian GN, Ding YP, Zhang W, Tanaka Y, Sugiyama H (2013) Clinical grade iPS cells: need for versatile small molecules and optimal cell sources. Chem Biol 20:1311–1322

    Article  CAS  PubMed  Google Scholar 

  9. Pandian GN, Sugiyama H (2014) Targeted editing of therapeutic genes using DNA-based transcriptional activators: scope and challenges. In: Chemical biology of nucleic acids: fundamentals and clinical applications. Springer, pp 347–365. https://doi.org/10.1007/978-3-642-54452-1_19.

  10. Patel S, Jung D, Yin PT, Carlton P, Yamamoto M, Bando T, Sugiyama H, Lee KB (2014) NanoScript: a nanoparticle-based artificial transcription factor for effective gene regulation. ACS Nano 8:8959–8967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pandian GN, Sugiyama H (2012) Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J 7:798–809

    Article  CAS  PubMed  Google Scholar 

  12. Pandian GN, Sugiyama H (2016) Nature-inspired design of smart biomaterials using the chemical biology of nucleic acids. Bull Chem Soc Jp 89:843–868

    Article  CAS  Google Scholar 

  13. Xu Y, Sugiyama H (2006) Photochemical approach to probing different DNA structures. Angew Chem Int Ed 45:1354–1362

    Article  CAS  Google Scholar 

  14. Brent Ft, Ptashne M (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729–736

    Article  CAS  PubMed  Google Scholar 

  15. Hollenberg SM, Evans RM (1998) Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 55:899–906

    Article  Google Scholar 

  16. Liu F, Green MR (1990) A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1a protein. Cell 61:1217–1224

    Article  CAS  PubMed  Google Scholar 

  17. Wang JC (2015) Finding primary targets of transcriptional regulators. Cell Cycle 4:356–358

    Article  Google Scholar 

  18. Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (2007) Nineamino-acid transactivation domain: establishment and prediction utilities. Genomics 89:756–768

    Article  CAS  PubMed  Google Scholar 

  19. Brivanlou AH, Darnell JE (2002) Signal transduction and the control of gene expression. Science 295(5556):813–818

    Article  CAS  PubMed  Google Scholar 

  20. Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178

    Article  CAS  PubMed  Google Scholar 

  21. Lemons D, McGinnis W (2006) Genomic evolution of hox gene clusters. Science 313(5795):1918–1922

    Article  CAS  PubMed  Google Scholar 

  22. Blancafort P, Magnenat L, Barbas CF (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 21:269–274

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y et al (2010) Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 5:791–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosen LE, Morrison HA, Masri S, Brown MJ et al (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34:4791–4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grizot S, Smith J, Daboussi F, Prieto J et al (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res 37:5405–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  CAS  PubMed  Google Scholar 

  27. Christian M, Cermak T, Doyle EL, Schmidt C et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang F, Cong L, Lodato S, Kosuri S et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 292:149–153

    Article  CAS  Google Scholar 

  29. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  CAS  PubMed  Google Scholar 

  30. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  31. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  32. Alexandre J, Coline P, Gwendoline D, Valérie G, Alan M, Julien V, Fayza D, Laurent P, Aymeric D (2015) Optimized tuning of TALEN specificity using non-conventional RVDs. Sci Rep 5:e8150

    Article  CAS  Google Scholar 

  33. Valton J, Guyot V, Marechal A, Jean-Marie J, Alexandre DA, Philippe D, Poirot L (2015) Multiplex TALEN treatment of primary T cells enables efficient depletion of TCR membrane expression. Mol Ther 23:1507–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poirot L, Philip B, Schiffer-Mannioui C, Clerre DL, Chion-Sotinel I, Derniame S, Bas C, Potrel P, Lemaire L (2015) Multiplex genome-edited T-cell manufacturing platform for “Off-the-Shelf” adoptive T-cell immunotherapies. Cancer Res 75:3853–3864

    Google Scholar 

  35. Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, Winston K, Tran LM, Diaz MA, Fu H, Finn LS, Pei Y, Himmelfarb J, Freedman BS (2017) Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Materials 16:1112–1119

    Article  CAS  PubMed  Google Scholar 

  36. Sandweiss AJ, McIntosh MI, Moutal A, Davidson-Knapp R, Hu J, Giri AK, Yamamoto T, Hruby VJ, Khanna R (2018) Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential. Mol Psych 23:1745–1755

    Article  CAS  Google Scholar 

  37. Liu Y, Zhan Y, Chen Z, He A, Li J, Wu H, Liu L, Zhuang C, Lin J, Guo X, Zhang Q, Huang W, Cai Z (2016) Directing cellular information flow via CRISPR signal conductors. Nat Methods 13:938–944

    Article  CAS  PubMed  Google Scholar 

  38. Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521

    Article  CAS  PubMed  Google Scholar 

  39. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:6299

    Article  CAS  Google Scholar 

  40. Wähnert U, Zimmer C, Luck G, Pitra C (1975) (dA.dT)-dependent inactivation of the DNA template properties by interaction with netropsin and distamycin a. Nucleic Acids Res 2:391

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE (1985) Binding of an antitumor drug to DNA: Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. J Mol Biol 183:553–563

    Article  CAS  PubMed  Google Scholar 

  42. Trauger JW, Baird EE, Dervan PB (1996) Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 382:559–561

    Article  CAS  PubMed  Google Scholar 

  43. White S, Szewczyk JW, Turner JM, Baird EE, Dervan PB (1998) Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands. Nature 391:468–471

    Article  CAS  PubMed  Google Scholar 

  44. Hsu CF, Dervan PB (2008) Quantitating the concentration of Py-Im polyamide-fluorescein conjugates in live cells. Bioorg Med Chem Lett 18:5851–5815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishijima S, Shinohara K, Bando T, Minoshima M, Kashiwazaki G, Sugiyama H (2010) Cell permeability of Py–Im-polyamide-fluorescein conjugates: influence of molecular size and Py/Im content. Bioorg Med Chem 18:978–983

    Article  CAS  PubMed  Google Scholar 

  46. Vaijayanthi T, Bando T, Pandian GN, Sugiyama H (2012) Progress and prospects of pyrroleimidazole polyamide–fluorophore conjugates as sequence- selective DNA probes. Chembiochem 13:2170

    Article  CAS  PubMed  Google Scholar 

  47. Bando T, Fujimoto J, Minoshima M, Shinohara K, Sasaki S, Kashiwazaki G, Mizumura M, Sugiyama H (2007) Detection of CAG repeat DNA sequences by pyrene-functionalized pyrroleimidazole polyamides. Bioorg Med Chem 15:6937–6942

    Article  CAS  PubMed  Google Scholar 

  48. Fujimoto J, Bando T, Minoshima M, Uchida S, Iwasaki M, Shinohara K, Sugiyama H (2008) Detection of triplet repeat sequences in the double-stranded DNA using pyrene-functionalized pyrrole-imidazole polyamides with rigid linkers. Bioorg Med Chem 16:5899–5907

    Article  CAS  PubMed  Google Scholar 

  49. Vaijayanthi T, Bando T, Hashiya K, Pandian GN, Sugiyama H (2013) Design of a new fluorescent probe: pyrrole/imidazole hairpin polyamides with pyrene conjugation at their γ-turn. Bioorg Med Chem 21:852–855

    Article  CAS  PubMed  Google Scholar 

  50. Lai Y-M, Fukuda N, Ueno T, Matsuda H, Saito S, Matsumoto K, Ayame H, Bando T, Sugiyama H, Mugishima H, Serie K (2005) Synthetic pyrrole-imidazole polyamide inhibits expression of the human transforming growth factor-beta1 gene. J Pharmacol Exp Ther 315:571–575

    Article  CAS  PubMed  Google Scholar 

  51. Minoshima M, Bando T, Sasaki S, Shinohara K, Shimizu T, Fujimoto J, Sugiyama H (2007) DNA alkylation by pyrrole−imidazole seco-CBI conjugates with an indole linker: sequence-specific DNA alkylation with 10-base-pair recognition through heterodimer formation. J Am Chem Soc 129:5384–5390

    Article  CAS  PubMed  Google Scholar 

  52. Kawamoto Y, Bando T, Kamada F, Li Y, Hashiya K, Maeshima K, Sugiyama H (2013) Development of a new method for synthesis of tandem hairpin pyrrole–imidazole polyamide probes targeting human telomeres. J Am Chem Soc 135:16468–16477

    Article  CAS  PubMed  Google Scholar 

  53. Kawamoto Y, Sasaki A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H (2015) Tandem trimer pyrrole–imidazole polyamide probes targeting 18 base pairs in human telomere sequences. Chem Sci 6:2307–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawamoto Y, Sasaki A, Chandran A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H (2016) Targeting 24 bp within telomere repeat sequences with tandem tetramer pyrrole–imidazole polyamide probes. J Am Chem Soc 138:14100–14107

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi T, Asami Y, Kitamura E, Suzuki T, Wang X, Igarashi J, Morohashi A, Shinojima Y, Kanou H, Saito K, Takasu T, Nagase H, Harada Y, Kuroda K, Watanabe T, Kumamoto S, Aoyama T, Matsumoto Y, Bando T, Sugiyama H, Yoshida-Noro C, Fukuda N, Hayashi N (2008) Development of pyrrole-imidazole polyamide for specific regulation of human aurora kinase-A and -B gene expression. Chem Biol 15:829–841

    Article  CAS  PubMed  Google Scholar 

  56. Ueno T, Fukuda N, Tsunemi A, Yao EH, Matsuda H, Tahira K, Matsumoto T, Matsumoto K, Matsumoto Y, Nagase H, Sugiyama H, Sawamura T (2009) A novel gene silencer, pyrroleimidazole polyamide targeting human lectin-like oxidized low-density lipoprotein receptor-1 gene improves endothelial cell function. J Hypertens 2009(27):508–516

    Google Scholar 

  57. Suzuki T, Asami Y, Takahashi T, Wang X, Watanabe T, Bando T, Sugiyama H, Fukuda N, Nagase H (2009) Development of a molecule-recognized promoter DNA sequence for inhibition of HER2 expression. J Antibiot 62:339–341

    Article  CAS  Google Scholar 

  58. Matsuda H, Fukuda N, Ueno T, Katakawa M, Wang X, Watanabe T, Matsui S, Aoyama T, Saito K, Bando T, Matsumoto Y, Nagase H, Matsumoto K, Sugiyama H (2011) Transcriptional inhibition of progressive renal disease by gene silencing pyrrole–imidazole polyamide targeting of the transforming growth factor-b1 promoter. Kidney Int 79:46–56

    Article  CAS  PubMed  Google Scholar 

  59. Yasuda A, Noguchi K, Yasuda A, Minoshima M, Kashiwazaki G, Kanda T, Katayama K, Mitsuhashi J, Bando T, Sugiyama H, Sugimoto Y (2011) DNA ligand designed to antagonize EBNA1 represses Epstein–Barr virus- induced immortalization. Cancer Sci 102:2221–2230

    Article  CAS  PubMed  Google Scholar 

  60. Syed J, Pandian GN, Sato S, Taniguchi J, Chandran A, Hashiya K, Bando T, Sugiyama H (2014) Targeted suppression of EVI1 oncogene expression by sequence-specific pyrroleimidazole polyamide. Chem Biol 21:1370–1380

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Nagase H, Watanabe T, Nobusue H, Suzuki T, Asami Y, Shinojima Y, Kawashima H, Takagi K, Mishra R, Igarashi J, Kimura M, Takayama T, Fukuda N, Sugiyama H (2010) Inhibition of MMP- 9 transcription and suppression of tumor metastasis by pyrrole- imidazole polyamide. Cancer Sci 101:759–766

    Article  CAS  PubMed  Google Scholar 

  62. Nagashima T, Aoyama T, Yokoe T, Fukasawa A, Fukuda N, Ueno T, Sugiyama H, Nagase H, Matsumoto Y (2009) Pharmacokinetic modeling and prediction of plasma pyrrole-imidazole polyamide concentration in rats using simultaneous urinary and biliary excretion data. Biol Pharm Bull 32:921–927

    Article  CAS  PubMed  Google Scholar 

  63. Fukasawa A, Aoyama T, Nagashima T, Fukuda N, Ueno T, Sugiyama H, Nagase H, Matsumoto Y (2009) Pharmacokinetics of pyrrole–imidazole polyamides after intravenous administration in rat. Biopharm Drug Dispos 30:81–89

    Article  CAS  PubMed  Google Scholar 

  64. Iguchi A, Fukuda N, Takahashi T, Watanabe T, Matsuda H, Nagase H, Bando T, Sugiyama H, Shimizu K (2013) RNA binding properties of novel gene silencing pyrrole-imidazole polyamides. Biol Pharm Bull 36:1152–1158

    Article  CAS  PubMed  Google Scholar 

  65. Minoshima M, Bando T, Sasaki S, Fujimoto J, Sugiyama H (2008) Pyrrole-imidazole hairpin polyamides with high affinity at 5′–CGCG–3′ DNA sequence; influence of cytosine methylation on binding. Nucleic Acids Res 36:2889–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taniguchi J, Pandian GN, Hidaka T, Hashiya K, Bando T, Kim KK, Sugiyama H (2017) A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res 45:9219–9228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malinee M, Kumar A, Hidaka T, Horie M, Hasegawa K, Pandian GN, Sugiyama H (2020) Targeted suppression of metastasis regulatory transcription factor SOX2 in various cancer cell lines using a sequence-specific designer pyrrole–imidazole polyamide. Bioorg Med Chem 28:115248

    Article  CAS  PubMed  Google Scholar 

  68. Sugiyama H, Lian C, Isomura M, Saito I, Wang AHJ (1996) Distamycin a modulates the sequence specificity of DNA alkylation by duocarmycin A. Proc Natl Acad Sci U S A 93:14405–14410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bando T, Sugiyama H (2006) Synthesis and biological properties of sequence-specific DNAalkylating pyrrole−imidazole polyamides. Acc Chem Res 39:935–944

    Article  CAS  PubMed  Google Scholar 

  70. Sasaki S, Bando T, Minoshima M, Shinohara K, Sugiyama H (2008) Sequence-specific alkylation by Y-shaped and tandem hairpin pyrrole-imidazole polyamides. Chem Eur J 14:864–870

    Article  CAS  PubMed  Google Scholar 

  71. Minoshima M, Bando T, Shinohara K, Kashiwazaki G, Nishijima S, Sugiyama H (2010) Comparative analysis of DNA alkylation by conjugates between pyrrole–imidazole hairpin polyamides and chlorambucil or seco-CBI. Bioorg Med Chem 18:1236–1243

    Article  CAS  PubMed  Google Scholar 

  72. Asamitsu S, Kawamoto Y, Hashiya F, Hashiya K, Yamamoto M, Kizaki S, Bando T, Sugiyama H (2014) Sequence-specific DNA alkylation and transcriptional inhibition by longchain hairpin pyrrole–imidazole polyamide-chlorambucil conjugates targeting CAG/CTG trinucleotide repeats. Bioorg Med Chem 22:4646–4657

    Article  CAS  PubMed  Google Scholar 

  73. Shinohara K, Bando T, Sugiyama H (2010) Anticancer activities of alkylating pyrroleimidazole polyamides with specific sequence recognition. Anti-Cancer Drugs 21:228–242

    Article  CAS  PubMed  Google Scholar 

  74. Kashiwazaki G, Bando T, Shinohara K, Minoshima M, Kumamoto H, Nishijima S, Sugiyama H (2010) Alkylation of a human telomere sequence by heterotrimeric chlorambucil PI polyamide conjugates. Bioorg Med Chem 18:2887–2893

    Article  CAS  PubMed  Google Scholar 

  75. Guo C, Kawamoto Y, Asamitsu S, Sawatani Y, Hashiya K, Bando T, Sugiyama H (2015) Rational design of specific binding hairpin py-im polyamides targeting human telomere sequences. Bioorg Med Chem 23:855–860

    Article  CAS  PubMed  Google Scholar 

  76. Minoshima M, Chou JC, Lefebvre S, Bando T, Shinohara K, Gottesfeld JM, Sugiyama H (2010) Potent activity against K562 cells by polyamide-seco-CBI conjugates targeting histone H4 genes. Bioorg Med Chem 18:168–174

    Article  CAS  PubMed  Google Scholar 

  77. Kashiwazaki G, Bando T, Yoshidome T, Masui S, Takagaki T, Hashiya K, Pandian GN, Yasuoka J, Akiyoshi K, Sugiyama H (2012) Synthesis and biological properties of highly sequence-specific-alkylating N- Methylpyrrole- N- Methylimidazole polyamide conjugates. J Med Chem 55:2057–2066

    Article  CAS  PubMed  Google Scholar 

  78. Taylor RD, Asamitsu S, Takenaka T, Yamamoto M, Hashiya K, Kawamoto Y, Bando T, Nagase H, Sugiyama H (2014) Sequence-specific DNA alkylation targeting for Kras codon 13 mutation by pyrrole-imidazole polyamide seco-CBI conjugates. Chem Eur J 20:1310–1317

    Article  CAS  PubMed  Google Scholar 

  79. Hiraoka K, Inoue T, Taylor RD, Watanabe T, Koshikawa N, Yoda H, Shinohara K, Takatori A, Sugimoto K, Maru Y, Denda T, Fujiwara K, Balmain A, Ozaki T, Bando T, Sugiyama H, Nagase H (2015) Inhibition of KRAS codon 12 mutants using a novel DNA-alkylating pyrroleimidazole polyamide conjugate. Nat Commun 6:6706

    Article  CAS  PubMed  Google Scholar 

  80. Taylor RD, Chandran A, Kashiwazaki G, Hashiya K, Bando T, Nagase H, Sugiyama H (2015) Selective targeting of the KRAS codon 12 mutation sequence by pyrrole-imidazole polyamide seco-CBI conjugates. Chem Eur J 21:14996–15003

    Article  CAS  PubMed  Google Scholar 

  81. Lin J, Hiraoka K, Watanabe T, Kuo T, Shinozaki Y, Takatori A, Koshikawa N, Chandran A, Otsuki J, Sugiyama H, Horton P, Nagase H (2016) Identification of binding targets of a pyrroleimidazole polyamide KR12 in the LS180 colorectal genome. PLoS One 11:e0165581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Morita K, Suzuki K, Maeda S et al (2017) Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest 127(7):2815–2828

    Article  PubMed  PubMed Central  Google Scholar 

  83. Han YW, Matsumoto T, Yokota H, Kashiwazaki G, Morinaga H, Hashiya K, Bando T, Harada Y, Sugiyama H (2012) Binding of hairpin pyrrole and imidazole polyamides to DNA: relationship between torsion angle and association rate constants. Nucleic Acids Res 40:11510–11517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Taylor RD, Kawamoto Y, Hashiya K, Bando T, Sugiyama H (2014) Sequence-specific DNA alkylation by tandem py-im polyamide conjugates. Chem Asian J 9:2527–2533

    Article  CAS  PubMed  Google Scholar 

  85. Han YW, Kashiwazaki G, Morinaga H, Matsumoto T, Hashiya K, Bando T, Sugiyama H (2013) Effect of single pyrrole replacement with β-Alanine on DNA binding affinity and sequence specificity of hairpin pyrrole/imidazole polyamides targeting 5′-GCGC-3′. Bioorg Med Chem 21:5436–5441

    Google Scholar 

  86. Takagaki T, Bando T, Kitano M, Hashiya K, Kashiwazaki G, Sugiyama H (2011) Evaluation of PI polyamide conjugates with eight-base pair recognition and improvement of the aqueous solubility by PEGylation. Bioorg Med Chem 19:5896–5902

    Article  CAS  PubMed  Google Scholar 

  87. Takagaki T, Bando T, Sugiyama H (2012) Synthesis of pyrrole-imidazole polyamide seco-1-Chloromethyl-5-hydroxy-1,2-dihydro-3H-benz[e]indole conjugates with a vinyl linker recognizing a 7 bp DNA sequence. J Am Chem Soc 134:13074–13081

    Article  CAS  PubMed  Google Scholar 

  88. Morinaga H, Bando T, Takagaki T, Yamamoto M, Hashiya K, Sugiyama H (2011) Cysteine cyclic pyrrole-imidazole polyamide for sequence-specific recognition in the DNA minor groove. J Am Chem Soc 133:18924–18930

    Article  CAS  PubMed  Google Scholar 

  89. Yamamoto M, Bando T, Morinaga N, Kawamoto Y, Hashiya K, Sugiyama H (2014) Sequence-specific DNA recognition by cyclic pyrrole-imidazole cysteine-derived polyamide dimers. Chem Eur J 20:752–759

    Article  CAS  PubMed  Google Scholar 

  90. Kameshima W, Ishizuka T, Minoshima M, Yamamoto M, Sugiyama H, Xu Y, Komiyama M (2013) Conjugation of peptide nucleic acid with a pyrrole/imidazole polyamide to specifically recognize and cleave DNA. Angew Chem Int Ed 52:13681–13684

    Article  CAS  Google Scholar 

  91. Ohtsuki A, Kimura MT, Minoshima M, Suzuki T, Ikeda M, Bando T, Nagase H, Shinohara K, Sugiyama H (2009) Synthesis and properties of PI polyamide-SAHA conjugate. Tetrahedron Lett 50:7288–7292

    Article  CAS  Google Scholar 

  92. Pandian GN, Shinohara K, Ohtsuki A, Nakano Y, Minoshima M, Bando T, Nagase H, Yamada Y, Watanabe A, Terada N, Sato S, Morinaga H, Sugiyama H (2011) Synthetic small molecules for epigenetic activation of pluripotent genes in mouse embryonic fibroblasts. Chembiochem 12:2822–2828

    Article  CAS  PubMed  Google Scholar 

  93. Pandian GN, Nakano Y, Sato S, Morinaga H, Bando T, Nagase H, Sugiyama H (2012) A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblast. Sci Rep 2:e544

    Article  CAS  Google Scholar 

  94. Pandian GN, Taniguchi J, Junetha S, Sato S, Han L, Saha A, AnandhaKumar C, Bando T, Nagase H, Vaijayanthi T, Taylor RD, Sugiyama H (2014) Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Sci Rep 4:e3843

    Article  CAS  Google Scholar 

  95. Han L, Pandian GN, Junetha S, Sato S, AnandhaKumar C, Taniguchi J, Saha A, Bando T, Nagase H, Sugiyama H (2013) A synthetic small molecule for targeted transcriptional activation of germ cell genes in a human somatic cell. Angew Chem Int Ed 52:13410–13413

    Article  CAS  Google Scholar 

  96. Pandian GN, Sato S, AnandhaKumar C, Taniguchi J, Takashima K, Syed J, Han L, Saha A, Bando T, Nagase J, Sugiyama H (2014) Identification of a small molecule that turns `ON` the pluripotency gene circuitry in human fibroblasts. ACS Chem Biol 9:2729–2736

    Article  CAS  PubMed  Google Scholar 

  97. Syed J, Chandran A, Pandian GN, Taniguchi J, Sato S, Hashiya K, Kashiwazaki G, Bando T, Sugiyama H (2015) A synthetic transcriptional activator of genes associated with the retina in human dermal fibroblasts. Chembiochem 16:1497–1501

    Article  CAS  PubMed  Google Scholar 

  98. Pandian GN, Ohtsuki A, Bando T, Sato S, Hashiya K, Sugiyama H (2012) Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 20:2656–2660

    Article  CAS  PubMed  Google Scholar 

  99. Saha A, Pandian GN, Sato S, Taniguchi J, Hashiya K, Bando T, Sugiyama H (2013) Synthesis and biological evaluation of a targeted DNA-binding transcriptional activator with HDAC8 inhibitory activity. Bioorg Med Chem 21:4201–4209

    Article  CAS  PubMed  Google Scholar 

  100. Saha A, Pandian GN, Sato S, Taniguchi J, Kawamoto Y, Hashiya K, Bando T, Sugiyama H (2014) Chemically modified synthetic small molecule boosts its biological efficacy against pluripotency genes in mouse fibroblast. ChemMedChem 9:2374–2380

    Article  CAS  PubMed  Google Scholar 

  101. AnandhaKumar C, Li Y, Kizaki S, Pandian GN, Hashiya K, Bando T, Sugiyama H (2014) Next-generation sequencing studies guide the design of pyrrole-imidazole polyamides with improved binding specificity by the addition of β-alanine. Chembiochem 15:2647–2651

    Article  CAS  PubMed  Google Scholar 

  102. AnandhaKumar C, Kizaki S, Pandian GN, Bando T, Sugiyama H (2015) Advancing smallmolecule-based chemical biology with next-generation sequencing technologies. Chembiochem 16:20–38

    Article  CAS  PubMed  Google Scholar 

  103. Han L, Pandian GN, Chandran A, Sato S, Taniguchi J, Kashiwazaki G, Sawatani Y, Hashiya K, Bando T, Xu Y, Qian X, Sugiyama H (2015) A synthetic DNA-binding domain guides distinct chromatin-modifying small molecules to activate an identical gene network. Angew Chem Int Ed 54:8700–8703

    Article  CAS  Google Scholar 

  104. Yu Z, Taniguchi J, Wei Y, Pandian GN, Hashiya K, Bando T, Sugiyama H Antiproliferative and apoptotic activities of sequence-specific histone acetyltransferase inhibitor. Eur J Med Chem 138:320–327

    Google Scholar 

  105. Patel S, Pongkulapa T, Yin PT, Pandian GN, Rathnam C, Bando T, Vaijayanthi T, Sugiyama H, Lee KB (2015) Integrating epigenetic modulators into NanoScript for enhanced chondrogenesis of stem cells. J Am Chem Soc 137:4598–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hidaka T, Pandian GN, Taniguchi J, Nobeyama T, Hashiya K, Bando T, Sugiyama H (2017) Creation of a synthetic ligand for mitochondrial DNA sequence recognition and promoterspecific transcription suppression. J Am Chem Soc 139:8444–8447

    Article  CAS  PubMed  Google Scholar 

  107. Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, Enge M, Kivioja T, Morgunova E, Taipale J (2015) DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527(7578):384–388

    Article  CAS  PubMed  Google Scholar 

  108. Yu Z, Pandian GN, Hidaka T, Sugiyama H (2019) Therapeutic gene regulation using pyrrole-imidazole polyamides. Adv Drug Deliv Rev 147:66–85

    Article  CAS  PubMed  Google Scholar 

  109. Tapia N, MacCarthy C, Esch D, Marthaler AG, Tiemann U, Araúzo-Bravo MJ, Jauch R, Cojocaru V, Schöler HR (2015) Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Sci Rep 5:e13533

    Article  CAS  Google Scholar 

  110. Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H (2001) Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev 15(10):1272–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu Z, Guo C, Wei Y, Hashiya K, Bando T, Sugiyama H (2018) Pip-HoGu: an artificial assembly with cooperative DNA recognition capable of mimicking transcription factor pairs. J Am Chem Soc 140(7):2426–2429

    Article  CAS  PubMed  Google Scholar 

  112. Yu Z, Hsieh WC, Asamitsu S, Hashiya K, Bando T, Ly DH, Sugiyama H (2018) Orthogonal γPNA dimerization domains empower DNA binders with cooperativity and versatility mimicking that of transcription factor pairs. Chem Eur J 24(53):14183–14188

    Article  CAS  PubMed  Google Scholar 

  113. Sacui I, Hsieh WC, Manna A, Sahu B, Ly DH (2015) Gamma peptide nucleic acids: as orthogonal nucleic acid recognition codes for organizing molecular self-assembly. J Am Chem Soc 137(26):8603–8610

    Article  CAS  PubMed  Google Scholar 

  114. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) The cucurbit[n]uril family: prime components for self-sorting systems. J Am Chem Soc 127(45):15959–15967

    Article  CAS  PubMed  Google Scholar 

  115. Jeon WS, Moon K, Park SH, Chun H, Ko YH, Lee JY, Lee ES, Samal S, Selvapalam N, Rekharsky MV, Sindelar V, Sobransingh D, Inoue Y, Kaifer AE, Kim K (2005) Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. J Am Chem Soc 127:12984–12989

    Article  CAS  PubMed  Google Scholar 

  116. Taniguchi J, Feng Y, Pandian GN, Hashiya F, Hidaka T, Hashiya K, Park S, Bando T, Ito S, Sugiyama H (2018) Biomimetic artificial epigenetic code for targeted acetylation of histones. J Am Chem Soc 140:7108–7115

    Article  CAS  PubMed  Google Scholar 

  117. Yu Z, Ai M, Samanta SK, Hashiya F, Taniguchi J, Asamitsu S, Ikeda S, Hashiya K, Bando T, Pandian GN, Isaacs L, Sugiyama H (2020) A synthetic transcription factor pair mimic for precise recruitment of an epigenetic modifier to the targeted DNA locus. Chem Comm 56:2296–2299

    Article  CAS  PubMed  Google Scholar 

  118. Zou T, Hashiya F, Wei Y, Yu Z, Pandian GN, Sugiyama H (2018) Direct observation of H3–H4 octasome by high- speed AFM. Chem Eur J 24(60):15998–16002

    Article  CAS  PubMed  Google Scholar 

  119. Yu Z (2020) Synthetic DNA binding assembly: architecture, application and perspectives. In: Artificial assemblies with cooperative DNA recognition. Springer, Singapore, pp 1–39

    Chapter  Google Scholar 

  120. Vaijayanthi T, Pandian GN, Sugiyama H (2018) Chemical control system of epigenetics. Chem Rec 18:1833–1853

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganesh N. Pandian or Hiroshi Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandian, G.N., Sugiyama, H. (2021). Designing Biomimicking Synthetic Transcription Factors for Therapeutic Gene Modulation. In: Wang, D.O., Packwood, D. (eds) Cell-Inspired Materials and Engineering. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-55924-3_6

Download citation

Publish with us

Policies and ethics