Skip to main content

Modeling a Sensorized Soft Layer for Adding Compliance to the Environment in Robotic Manipulation

  • Conference paper
  • First Online:
Advances in Italian Mechanism Science (IFToMM ITALY 2020)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 91))

Included in the following conference series:

Abstract

Soft robots are spreading quickly and widely thanks to their adaptability, tolerance to uncertainties, reliability, and intrinsic safety. To predict their behaviour and optimize their design, it is fundamental to devise models that account for the fact that they are made of highly non-linear materials and can be subjected to large, continuous deformations. In this work, we focus on modelling a soft robotic device developed to provide controllable compliance and sensing capabilities to the environment. Different models for non-linear materials in FEM static simulations are tested to evaluate which type of representation is more convenient in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.smooth-on.com/tb/files/ECOFLEX_SERIES_TB.pdf.

References

  1. Bimbo, J., Turco, E., Ghazaei Ardakani, M., Pozzi, M., Salvietti, G., Bo, V., Malvezzi, M., Prattichizzo, D.: Exploiting robot hand compliance and environmental constraints for edge grasps. Front. Robot. AI 6, 135 (2019). https://doi.org/10.3389/frobt.2019.00135

    Article  Google Scholar 

  2. Boyce, M.C.: Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elasticity. Rubber Chem. Technol. 69(5), 781–785 (1996)

    Article  Google Scholar 

  3. Case, J.C., White, E.L., Kramer, R.K.: Soft material characterization for robotic applications. Soft Robot. 2(2), 80–87 (2015)

    Article  Google Scholar 

  4. COMSOLS Multiphysics, Structural Mechanics Module User’s Guide (2017)

    Google Scholar 

  5. Deimel, R., Eppner, C., Álvarez-Ruiz, J., Maertens, M., Brock, O.: Exploitation of environmental constraints in human and robotic grasping. In: Robotics Research, pp. 393–409. Springer (2016)

    Google Scholar 

  6. Elango, N., Faudzi, A.: A review article: investigations on soft materials for soft robot manipulations. Int. J. Adv. Manuf. Technol. 80(5–8), 1027–1037 (2015)

    Article  Google Scholar 

  7. Gaudeni, C., Pozzi, M., Iqbal, Z., Malvezzi, M., Prattichizzo, D.: Grasping with the softpad, a soft sensorized surface for exploiting environmental constraints with rigid grippers. IEEE Robot. Autom. Lett. 5(3), 3884–3891 (2020)

    Article  Google Scholar 

  8. Gent, A.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  9. Hill, J.: Exact integrals and solutions for finite deformations of the incompressible Varga elastic materials. In: London Mathematical Society Lecture Note Series, pp. 160–200 (2001)

    Google Scholar 

  10. Hussain, I., Renda, F., Iqbal, Z., Malvezzi, M., Salvietti, G., Seneviratne, L., Gan, D., Prattichizzo, D.: Modeling and prototyping of an underactuated gripper exploiting joint compliance and modularity. IEEE Robot. Autom. Lett. 3(4), 2854–2861 (2018)

    Article  Google Scholar 

  11. Lee, C., Kim, M., Kim, Y.J., Hong, N., Ryu, S., Kim, H.J., Kim, S.: Soft robot review. Int. J. Control Autom. Syst. 15(1), 3–15 (2017)

    Article  Google Scholar 

  12. Martins, P., Natal Jorge, R., Ferreira, A.: A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42(3), 135–147 (2006)

    Article  Google Scholar 

  13. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)

    Article  Google Scholar 

  14. Noor, S.N.A.M., Mahmud, J.: Modelling and computation of silicone rubber deformation adapting neo-hookean constitutive equation. In: 2015 Fifth International Conference on Communication Systems and Network Technologies, pp. 1323–1326. IEEE (2015)

    Google Scholar 

  15. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Roy. Soc. London. A. Math. Phys. Sci. 326(1567), 565–584 (1972)

    MATH  Google Scholar 

  16. Pal, A., Goswami, D., Martinez, R.V.: Elastic energy storage enables rapid and programmable actuation in soft machines. Adv. Funct. Mater. 30, 1906603 (2019)

    Article  Google Scholar 

  17. Pozzi, M., Miguel, E., Deimel, R., Malvezzi, M., Bickel, B., Brock, O., Prattichizzo, D.: Efficient fem-based simulation of soft robots modeled as kinematic chains. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8 (2018)

    Google Scholar 

  18. Russo, M., Ceccarelli, M., Corves, B., Hüsing, M., Lorenz, M., Cafolla, D., Carbone, G.: Design and test of a gripper prototype for horticulture products. Robot. Comput.-Integr. Manuf. 44, 266–275 (2017)

    Article  Google Scholar 

  19. Sanz, P.J., Requena, A., Inesta, J.M., Del Pobil, A.P.: Grasping the not-so-obvious: vision-based object handling for industrial applications. IEEE Robot. Autom. Mag. 12(3), 44–52 (2005)

    Article  Google Scholar 

  20. Steck, D., Qu, J., Kordmahale, S., Tscharnuter, D., Muliana, A., Kameoka, J.: Mechanical responses of Ecoflex silicone rubber: compressible and incompressible behaviors. J. Appl. Polym. Sci. 136(5), 47025 (2019)

    Article  Google Scholar 

  21. Yap, H.K., Goh, J.C.H., Yeow, R.C.H.: Design and characterization of soft actuator for hand rehabilitation application. In: Lacković, I., Vasic, D. (eds.) 6th European Conference of the International Federation for Medical and Biological Engineering, pp. 367–370. Springer, Cham (2015)

    Chapter  Google Scholar 

  22. Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66(5), 754–771 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pozzi, M., Gaudeni, C., Iqbal, Z., Prattichizzo, D., Malvezzi, M. (2021). Modeling a Sensorized Soft Layer for Adding Compliance to the Environment in Robotic Manipulation. In: Niola, V., Gasparetto, A. (eds) Advances in Italian Mechanism Science. IFToMM ITALY 2020. Mechanisms and Machine Science, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-030-55807-9_42

Download citation

Publish with us

Policies and ethics