Skip to main content

A Multi-phase Iterative Approach for Anomaly Detection and Its Agnostic Evaluation

  • Conference paper
  • First Online:
Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Abstract

Data generated by sets of sensors can be used to perform predictive maintenance on industrial systems. However, these sensors may suffer faults that corrupt the data. Because the knowledge of sensor faults is usually not available for training, it is necessary to develop an agnostic method to learn and detect these faults. According to these industrial requirements, the contribution of this paper is twofold: 1) an unsupervised method based on the successive application of specialized anomaly detection methods; 2) an agnostic evaluation method using a supervised model, where the data labels come from the unsupervised process. This approach is demonstrated on two public datasets and on a real industrial dataset.

This project is supported by ANITI through the French “Investing for the Future – PIA3” program under the Grant agreement noANR-19-PI3A-0004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia, M.C., Sanz-Bobi, M.A., del Pico, J.: SIMAP: intelligent system for predictive maintenance: application to the health condition monitoring of a windturbine gearbox. Comput. Ind. 57(6), 552–568 (2006). E-Maintenance Special Issue

    Article  Google Scholar 

  2. Edgeworth, F.Y.: On discordant observations. Philos. Mag. 23(5), 364–375 (1887)

    Article  Google Scholar 

  3. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques–part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Industr. Electron. 62(6), 3757–3767 (2015)

    Article  Google Scholar 

  4. Peischl, B., Wotawa, F.: Model-based diagnosis or reasoning from first principles. IEEE Intell. Syst. 18(3), 32–37 (2003)

    Article  Google Scholar 

  5. Trave-Massuyes, L.: Bridging control and articial intelligence theories for diagnosis: a survey. Eng. Appl. Artif. Intell. 27, 1–16 (2014)

    Article  Google Scholar 

  6. Cordier, M.-O., Dague, P., Pencolé, Y., Travé-Massuyès, L.: Diagnosis and supervision: model-based approaches. In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intelligence Research, pp. 673–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-06164-7_21

    Chapter  Google Scholar 

  7. Biswas, G., Cordier, M.O., Lunze, J., Staroswiecki, M., Trave-Massuyes, L.: Diagnosis of complex systems: bridging the methodologies of the FDI and DX communities. IEEE SMC Trans. - Part B 34(5), 2159–2162 (2004). Special Issue

    Google Scholar 

  8. Hawkins, D.M.: Identification of Outliers. Monographs on Statistics and Applied Probability. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-015-3994-4

    Book  MATH  Google Scholar 

  9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009).

    Google Scholar 

  10. Breuning, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the ACM SIGMOD 2000 International Conference on Management of Data, Dallas, pp. 93–104. ACM (2000)

    Google Scholar 

  11. Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: LoOP: local outlier probabilities. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM 2009), Hong Kong, pp. 1649–1652. ACM (2009)

    Google Scholar 

  12. Padamitriou, S., Kitagawa, H., Gibbons, P.B., Faloustos, C.: LOCI: fast outlier detection using the local correlation integral. In: Proceedings of the 19th International Conference on Data Engineering, Bangalore, pp. 315–326. IEEE (2003)

    Google Scholar 

  13. Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J.: A comparative evaluation of outlier detection algorithms: experiments and analyses. Pattern Recogn. 74, 406–421 (2018)

    Article  Google Scholar 

  14. Martin, R.A., Schwabacher, M., Oza, N.C., Srivastava, A.N.: Comparison of unsupervised anomaly detection methods for systems health management using space shuttle. In: Proceedings of the Joint Army Navy NASA Air Force Conference on Propulsion (2007)

    Google Scholar 

  15. Auslander, B., Gupta, K.M., Aha, D.W.: Comparative evaluation of anomaly detection algorithms for local maritime video surveillance. In: Proceedings of SPIE - The International Society for Optical Engineering, SPIE (2011)

    Google Scholar 

  16. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE 11(4), e0152173 (2016)

    Article  Google Scholar 

  17. Goix, N.: How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms? hal-01341809 (2016)

    Google Scholar 

  18. Ganganwar, V.: An overview of classification algorithms for imbalanced datasets. Int. J. Emerg. Technol. Adv. Eng. 2(4), 42–47 (2012)

    Google Scholar 

  19. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 539–550 (2008)

    Google Scholar 

  20. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  21. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn imbalanced data, 110, pp. 1–12. University of California, Berkeley (2004)

    Google Scholar 

  22. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A (Syst. Hum.) 40(1), 185–197 (2009)

    Article  Google Scholar 

  23. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms-the numenta anomaly benchmark. In: 14th International Conference on Machine Learning and Applications (ICMLA), Miami, pp. 38–44. IEEE (2015)

    Google Scholar 

  24. Rayana, S.: ODDS Library. Stony Brook University, Department of Computer Science (2016). http://odds.cs.stonybrook.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kévin Ducharlet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ducharlet, K., Travé-Massuyès, L., Le Lann, MV., Miloudi, Y. (2020). A Multi-phase Iterative Approach for Anomaly Detection and Its Agnostic Evaluation. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics