Advertisement

The Black Mirror: What Your Mobile Phone Number Reveals About You

  • Nicolai KrügerEmail author
  • Agnis Stibe
  • Frank Teuteberg
Conference paper
  • 242 Downloads
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 389)

Abstract

In the present era of pervasive mobile technologies, interconnecting innovations are increasingly prevalent in our lives. In this evolutionary process, mobile and social media communication systems serve as a backbone for human interactions. When assessing privacy risks related to this, privacy scoring models (PSM) can help quantifying the personal information risks. This paper uses the mobile phone number itself as a basis for privacy scoring. We tested 1,000 random phone numbers for their matching to social media accounts. The results raise concerns how network and communication layers are predominately connected. PSMs will support future organizational sensitivity for data linkability.

Keywords

Privacy Information privacy Privacy scoring model Social media privacy Mobile phone privacy Mobile Device Management 

References

  1. 1.
    Agudelo-Serna, C.A., Ahmad, A., Bosua, R., et al.: Strategies to mitigate knowledge leakage risk caused by the use of mobile devices: a preliminary Study. In: ICIS 2017: Transforming Society with Digital Innovation, pp. 1–19. Seoul (2017)Google Scholar
  2. 2.
    Holland, M.: WhatsApp ermöglicht weiterhin Überwachung beliebiger Nutzer. https://www.heise.de/newsticker/meldung/WhatsApp-ermoeglicht-weiterhin-Ueberwachung-beliebiger-Nutzer-3857506.html. Accessed 07 Dec 2019
  3. 3.
    Dwyer, C., Hiltz, S.R., Passerini, K.: Trust and privacy concern within social networking sites: a comparison of Facebook and MySpace. Am. Conf. Inf. Syst. 123, 339–350 (2007)Google Scholar
  4. 4.
    Bundesnachrichtendienst: OSINT. http://www.bnd.bund.de/DE/Auftrag/Informations-gewinnung/OSINT/-osint_node.html. Accessed 07 Dec 2019
  5. 5.
  6. 6.
    Meffert, H., Burmann, C., Kirchgeorg, M.: Marketing. Grundlagen Marktorientierter Unternehmensführung. Springer, Wiesbaden (2012)Google Scholar
  7. 7.
    Kunz, T., Fuchs, M.: Pre-call validation of RDD cell phone numbers. A field experiment. In: JSM Proceedings (2011)Google Scholar
  8. 8.
    T-Systems International GmbH: Den Überblick über die wichtigen Orte haben. https://www.t-systems.com/blob/384750/cdfde6863685cf0f08068a53e9e18a84/DL_Flyer_Motionlogic.pdf. Accessed 07 Dec 2019
  9. 9.
    Bélanger, F., Crossler, R.E.: Privacy in the digital age: a review of information privacy research in information systems. MIS Q. 35(4), 1017–1041 (2011)CrossRefGoogle Scholar
  10. 10.
    Petkos, G., Papadopoulos, S., Kompatsiaris, Y.: PScore: a framework for enhancing privacy awareness in online social networks. In: 10th International Conference on Availability, Reliability and Security, pp. 592–600 (2015)Google Scholar
  11. 11.
    Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online social networks. ACM Trans. Knowl. Discov. Data 5(1), 1–30 (2010)CrossRefGoogle Scholar
  12. 12.
    Vidyalakshmi, B.S., Wong, R.K., Chi, C.H.: Privacy scoring of social network users as a service. In: Proceedings - 2015 IEEE International Conference on Services Computing, SCC 2015, New York, pp. 218–225, New York (2015)Google Scholar
  13. 13.
    Hamed, A., Ayed, H.K.B.: Privacy scoring and users’ awareness for Web tracking. In: 6th International Conference on Information and Communication Systems, pp. 100–105. Fort Worth (2015)Google Scholar
  14. 14.
    Kaffel, H., Ayed, B.: Privacy risk assessment for web tracking. In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver (2016)Google Scholar
  15. 15.
    Fife, E., Orjuela, J.: Mobile phones and user perceptions of privacy and security. In: International Conference on Mobile Business, p. 23, Delft (2012)Google Scholar
  16. 16.
    Rechert, K., Meier, K., Wehrle, D., et al.: Location privacy in mobile telephony networks – conflict of interest between safety, security and privacy. In: IEEE International Conferences on Internet of Things, and Cyber, Physical and Social Computing, pp. 508–513. Dalian (2011)Google Scholar
  17. 17.
    European Union: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC, Official Journal of the European Union, pp. 1–88 (2018)Google Scholar
  18. 18.
    Deswarte, Y., Aguilar Melchor, C.: Current and future privacy enhancing technologies for the Internet. Ann. Telecommun. 61, 399–417 (2006)CrossRefGoogle Scholar
  19. 19.
    Herrmann, D.: Privacy issues in the domain name system and techniques for self-defense. IT-Inf. Technol. 57(6), 388–393 (2015)Google Scholar
  20. 20.
    Lowry, P.B., Cao, J., Everard, A.: Privacy concerns versus desire for interpersonal awareness in driving the use of self-disclosure technologies: the case of instant messaging in two cultures. J. Manag. Inf. Syst. 27(4), 163–200 (2011)CrossRefGoogle Scholar
  21. 21.
    Külcü, Ö., Henkoglu, T.: Privacy in social networks: an analysis of Facebook. Int. J. Inf. Manag. 34, 761–769 (2014)CrossRefGoogle Scholar
  22. 22.
    Lankton, N.K., McKnight, D.H., Tripp, J.F.: Understanding the antecedents and outcomes of Facebook privacy behaviors: an integrated model. IEEE Trans. Eng. Manag. 1–15 (2019)Google Scholar
  23. 23.
    Kesdogan, D., Fouletier, X.: Power control in cellular radio systems. In: IEEE Wireless Communication System Symposium, pp. 35–40, London (1995)Google Scholar
  24. 24.
    Palat, S.K., Andresen, S.: User profiles and their replication for reduction of HLR accesses and signalling load. In: Proceedings of ICUPC 5th International Conference on Universal Personal Communications, IEEE, pp. 865–869, Cambridge (1996)Google Scholar
  25. 25.
    Arapinis, M., Ilaria Mancini, L., Ritter, E., et al.: Analysis of privacy in mobile telephony systems verifying interoperability requirements in pervasive systems. Int. J. Inf. Secur. 16(5), 491–523 (2016)CrossRefGoogle Scholar
  26. 26.
    Eren, E., Detken, K.-O.: Mobile Security. Risiken mobiler Kommunikation und Lösungen zur mobilen Sicherheit. Carl Hanser Verlag, München, Wien (2006)Google Scholar
  27. 27.
    Costin, A., Isacenkova, J., Balduzzi, M., et al.: The role of phone numbers in understanding cyber-crime schemes. In: 11th Annual Conference on Privacy, Security and Trust, pp. 213–222, Tarragona (2013)Google Scholar
  28. 28.
  29. 29.
    Abramova, O., Krasnova, H., Tan, C.-W.: How much will you pay? Understanding the value of information cues in the sharing economy. In: ECIS 2017 Proceedings, pp. 1011–1028, Guimarães (2017)Google Scholar
  30. 30.
    Baden-Württemberg, Kultusministerium.: Kommunikationsplattformen am Beispiel WhatsApp. https://it.kultus-bw.de/,Lde_DE/Startseite/IT-Sicherheit/Kommunikations-plattformen?QUERYSTRING=whatsapp. Accessed 07 Dec 2019
  31. 31.
    Karaboga, M., Masur, P., Matzner, T., et al.: Selbstdatenschutz. In: Schütz et al. (ed.) Schriftenreihe Forum Privatheit und selbstbestimmtes Leben in der digitalen Welt, Fraunhofer-Institut für System- und Innovationsforschung ISI, Karlsruhe (2014)Google Scholar
  32. 32.
    Frischmann, B., Selinger, E.: Re-Engineering Humanity. Cambridge University Press, Cambridge (2018)CrossRefGoogle Scholar
  33. 33.
    Stibe, A., Cugelman, B.: Social influence scale for technology design and transformation. In: Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P. (eds.) INTERACT 2019. LNCS, vol. 11748, pp. 561–577. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-29387-1_33CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Accounting and Information SystemsUniversity of OsnabrueckOsnabrueckGermany
  2. 2.TRANSFORMS.MEParisFrance

Personalised recommendations