Advertisement

An Architecture for Multi-chain Business Process Choreographies

Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 389)

Abstract

An increasing number of organizations employ blockchain technology in their business process landscapes, especially when dealing with inter-organizational choreographies. Due to complex requirements with regard to data security and privacy in practice, however, no singular blockchain captures all use cases. Blockchains optimized for various levels of risk tolerance and confidentiality coexist in multi-chain environments, posing severe architectural challenges for blockchain-based Business Process Management Systems (BPMSs). Current state-of-the-art approaches lack the global perspective necessary, and focus on single-blockchain environments. In this paper, we alleviate these issues by developing a general architecture for multi-chain BPMSs for choreographies. We show the feasibility of our architecture by a prototypical implementation, and discuss future challenges using a concrete case study.

Keywords

Process choreographies Business Process Management System Blockchain-based process execution Smart contracts 

References

  1. 1.
    Di Ciccio, C., et al.: Blockchain-based traceability of inter-organisational business processes. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 56–68. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94214-8_4CrossRefGoogle Scholar
  2. 2.
    Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: a framework for analyzing private blockchains. In: ACM International Conference on Management of Data, SIGMOD 2017, pp. 1085–1100. ACM (2017)Google Scholar
  3. 3.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-33143-5CrossRefGoogle Scholar
  4. 4.
    García-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 130–146. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65000-5_8CrossRefGoogle Scholar
  5. 5.
    Hull, R., Batra, V.S., Chen, Y.-M., Deutsch, A., Heath III, F.F.T., Vianu, V.: Towards a shared ledger business collaboration language based on data-aware processes. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 18–36. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46295-0_2CrossRefGoogle Scholar
  6. 6.
    Jin, H., Dai, X., Xiao, J.: Towards a novel architecture for enabling interoperability amongst multiple blockchains. In: 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1203–1211. IEEE (2018).  https://doi.org/10.1109/ICDCS.2018.00120
  7. 7.
    Klinger, P., Bodendorf, F.: Blockchain-based cross-organizational execution framework for dynamic integration of process collaborations. In: 15th International Business Informatics Congress (2020)Google Scholar
  8. 8.
    Köpke, J., Franceschetti, M., Eder, J.: Balancing privity and enforceability of BPM-based smart contracts on blockchains. In: Di Ciccio, C., et al. (eds.) BPM 2019. LNBIP, vol. 361, pp. 87–102. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-30429-4_7CrossRefGoogle Scholar
  9. 9.
    Korpela, K., Hallikas, J., Dahlberg, T.: Digital supply chain transformation toward blockchain integration. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)Google Scholar
  10. 10.
    Ladleif, J., Weske, M., Weber, I.: Modeling and enforcing blockchain-based choreographies. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 69–85. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-26619-6_7CrossRefGoogle Scholar
  11. 11.
    López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: Caterpillar: a business process execution engine on the Ethereum blockchain. CoRR abs/1808.03517 (2018)Google Scholar
  12. 12.
    Madsen, M.F., Gaub, M., Høgnason, T., Kirkbro, M.E., Slaats, T., Debois, S.: Collaboration among adversaries: distributed workflow execution on a blockchain. In: Symposium on Foundations and Applications of Blockchain (2018)Google Scholar
  13. 13.
    Mendling, J., Weber, I., et al.: Blockchains for business process management - challenges and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4:1–4:16 (2018).  https://doi.org/10.1145/3183367
  14. 14.
    Sturm, C., Szalanczi, J., Schönig, S., Jablonski, S.: A lean architecture for blockchain based decentralized process execution. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 361–373. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11641-5_29CrossRefGoogle Scholar
  15. 15.
    Udokwu, C., Kormiltsyn, A., Thangalimodzi, K., Norta, A.: The state of the art for blockchain-enabled smart-contract applications in the organization. In: Ivannikov ISP RAS Open Conference, pp. 137–144. IEEE (2018)Google Scholar
  16. 16.
    Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_19CrossRefGoogle Scholar
  17. 17.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Technical report EIP-150 (2014)Google Scholar
  18. 18.
    Xu, X., Weber, I., Staples, M.: Architecture for Blockchain Applications. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-03035-3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Hasso Plattner Institute, University of PotsdamPotsdamGermany

Personalised recommendations