Skip to main content

Transition Metal Oxides as Electrode Materials for Supercapacitors

  • Chapter
  • First Online:
Handbook of Nanocomposite Supercapacitor Materials II

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 302))

Abstract

Transition metal oxides are promising electrode materials for electrochemical energy storage, as they exhibit higher specific capacity/capacitance and energy density due to their fast and reversible surface redox reactions. This chapter provides a comprehensive study on fabrication, structural characterizations, electrochemical properties, and supercapacitor performance of different types of transition metal oxide-based electrode materials to fully exploit the potential of them in supercapacitor applications. A comprehensive overview of supercapacitive performance of different types of transition metal oxide-based electrodes such as RuO2, MnO2, NiO, and Co3O4 has been included in this chapter to understand the recent progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Cherusseri, R. Sharma R, K.K. Kar, Nanotechnology advancements on carbon nanotube/polypyrrole composite electrodes for supercapacitors, in ed. by K.K. Kar, J.K. Pandey, S. Rana, Handbook of Polymer Nanocomposites. Processing, Performance and Application (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-642-45229-1_22

  2. S. Banerjee, B. De, P. Sinha, J. Cherusseri, K.K. Kar, Applications of supercapacitors, in ed. by K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials I Characteristics (Springer, Berlin, 2020). https://doi.org/10.1007/978-3-030-43009-2_13

  3. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Prog. Energy Combust. Sci. 75, 100786 (2019)

    Google Scholar 

  4. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G. Kawamura, K.K. Kar, A. Matsuda, Mater. Today (2020). https://doi.org/10.1016/j.mattod.2020.04.010

  5. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    CAS  Google Scholar 

  6. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    CAS  Google Scholar 

  7. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009)

    CAS  Google Scholar 

  8. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014)

    CAS  Google Scholar 

  9. W. Deng, X. Ji, Q. Chen, C.E. Banks, RSC Adv. 1, 1171 (2011)

    CAS  Google Scholar 

  10. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Adv. Mater. 24, 5166 (2012)

    CAS  Google Scholar 

  11. J. Tahalyani, J. Akhtar, J. Cherusseri, K.K. Kar, Characteristics of capacitor: fundamental aspects, in ed. by K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials I Characteristics (Springer, Berlin, 2020). https://doi.org/10.1007/978-3-030-43009-2_1

  12. S. Banerjee, P. Sinha, K.D. Verma, T. Pal, B. De, J. Cherusseri, P.K. Manna, K.K. Kar, Capacitor to supercapacitor, in ed. by K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials I Characteristics (Springer, Berlin,2020). https://doi.org/10.1007/978-3-030-43009-2_2

  13. K.D. Verma, P. Sinha, S. Banerjee, K.K. Kar, Characteristics of electrode materials for supercapacitors, in ed. by K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials I Characteristics (Springer, Berlin, 2020). https://doi.org/10.1007/978-3-030-43009-2_9

  14. J. Cherusseri, K.K. Kar, J. Mater. Chem. A 3, 21586 (2015)

    CAS  Google Scholar 

  15. J. Cherusseri, K.K. Kar, J. Mater. Chem. A 4, 9910 (2016)

    CAS  Google Scholar 

  16. B.E. Conway, J. Electrochem. Soc. 138, 1539 (1991)

    CAS  Google Scholar 

  17. J. Cherusseri, K.K. Kar, Phys. Chem. Chem. Phys. 18, 8587 (2016)

    CAS  Google Scholar 

  18. T.R. Jow, J.P. Zheng, MRS Proc. 393, 7 (1995)

    Google Scholar 

  19. X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T.L. Maria, Y. Yang, H. Zhang, H.H. Hng, Q. Yan, Nano Res. 3, 643 (2010)

    CAS  Google Scholar 

  20. J. Cherusseri, K.K. Kar, RSC Adv. 6, 60454 (2016)

    CAS  Google Scholar 

  21. J. Cherusseri, R. Sharma, K.K. Kar, Carbon. N. Y. 105, 113 (2016)

    CAS  Google Scholar 

  22. A. Tyagi, S. Banerjee, J. Cherusseri, K.K. Kar, Characteristics of transition metal oxides, in ed. by K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials I Characteristics (Springer, Berlin, 2020). https://doi.org/10.1007/978-3-030-43009-2_3

  23. S. Trasatti, G. Buzzanca, J. Electroanal. Chem. Interfacial Electrochem. 29, A1 (1971)

    Google Scholar 

  24. J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison, Langmuir 15, 780 (2002)

    Google Scholar 

  25. W. Dmowski, T. Egami, K.E. Swider-Lyons, C.T. Love, D.R. Rolison, J. Phys. Chem. B 106, 12677 (2002)

    CAS  Google Scholar 

  26. J. Mchardy, F. Ludwig, Sol. Energy 8, 136 (1964)

    Google Scholar 

  27. M. Rajkumar, C.T. Hsu, T.H. Wu, M.G. Chen, C.C. Hu, Prog. Nat. Sci. Mater. Int. 25, 527 (2015)

    CAS  Google Scholar 

  28. J. Zhang, J. Ma, L.L. Zhang, P. Guo, J. Jiang, X.S. Zhao, J. Phys. Chem. C 114, 13608 (2010)

    CAS  Google Scholar 

  29. C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Nano Lett. 6, 2690 (2006)

    CAS  Google Scholar 

  30. W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011)

    CAS  Google Scholar 

  31. H.Y. Lee, J.B. Goodenough, J. Solid State Chem. 144, 220 (1999)

    CAS  Google Scholar 

  32. M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 16, 3184 (2004)

    CAS  Google Scholar 

  33. C. Hu, Electrochem. Commun. 4, 105 (2002)

    CAS  Google Scholar 

  34. B. Messaoudi, S. Joiret, M. Keddam, H. Takenouti, Electrochim. Acta 46, 2487 (2001)

    CAS  Google Scholar 

  35. O. Ghodbane, J.-L. Pascal, F. Favier, A.C.S. Appl, Mater. Interfaces 1, 1130 (2009)

    CAS  Google Scholar 

  36. P. Ragupathy, H.N. Vasan, N. Munichandraiah, J. Electrochem. Soc. 155, A34 (2008)

    CAS  Google Scholar 

  37. K.K. Kar, A. Hodzic, in Carbon Nanotube Based Nanocomposites: Recent Developments, 1st edn. (Research publishing, 2011)

    Google Scholar 

  38. P. Wang, Y.J. Zhao, L.X. Wen, J.F. Chen, Z.G. Lei, Ind. Eng. Chem. Res. 53, 20116 (2014)

    CAS  Google Scholar 

  39. P. Yu, X. Zhang, Y. Chen, Y. Ma, Z. Qi, Mater. Chem. Phys. 118, 303 (2009)

    CAS  Google Scholar 

  40. J. Yan, T. Wei, J. Cheng, Z. Fan, M. Zhang, Mater. Res. Bull. 45, 210 (2010)

    CAS  Google Scholar 

  41. C. Ye, Z.M. Lin, S.Z. Hui, J. Electrochem. Soc. 152, A1272 (2006)

    Google Scholar 

  42. J.T. Sampanthar, J. Dou, G.G. Joo, E. Widjaja, L.Q.H. Eunice, Nanotechnology 18, 025601 (2007)

    Google Scholar 

  43. X. Wang, A. Yuan, Y. Wang, J. Power Sources 172, 1007 (2007)

    CAS  Google Scholar 

  44. T. Shinomiya, V. Gupta, N. Miura, Electrochim. Acta 51, 4412 (2006)

    CAS  Google Scholar 

  45. C. Xu, Y. Zhao, G. Yang, F. Li, H. Li, Chem. Commun. 7575 (2009)

    Google Scholar 

  46. M. Tehrani, P. Khanbolouki, M. Tehrani, P. Khanbolouki, M. Tehrani, P. Khanbolouki in Advanced Nanomaterials (Springer, Cham, 2018), p. 3–35

    Google Scholar 

  47. Y.G. Wang, Y.Y. Xia, Electrochim. Acta 51, 3223 (2006)

    CAS  Google Scholar 

  48. J. Cheng, G.-P. Cao, Y.-S. Yang, J. Power Sources 159, 734 (2006)

    CAS  Google Scholar 

  49. U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande, Appl. Surf. Sci. 255, 2603 (2008)

    CAS  Google Scholar 

  50. C.Y. Cao, W. Guo, Z.M. Cui, W.G. Song, W. Cai, J. Mater. Chem. 21, 3204 (2011)

    CAS  Google Scholar 

  51. L. Cui, J. Li, X.G. Zhang, J. Appl. Electrochem. 39, 1871 (2009)

    CAS  Google Scholar 

  52. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nano Lett. 12, 2559 (2012)

    CAS  Google Scholar 

  53. J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, W. Liang, Electrochim. Acta 132, 127 (2014)

    CAS  Google Scholar 

  54. Y. Shan, L. Gao, Mater. Chem. Phys. 103, 206 (2007)

    CAS  Google Scholar 

  55. X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang, X. Liang, Electrochim. Acta 56, 4985 (2011)

    CAS  Google Scholar 

  56. S.G. Kandalkar, D.S. Dhawale, C.K. Kim, C.D. Lokhande, Synth. Met. 160, 1299 (2010)

    CAS  Google Scholar 

  57. S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande, Appl. Surf. Sci. 254, 5540 (2008)

    CAS  Google Scholar 

  58. C. Lin, J. Electrochem. Soc. 145, 4097 (2006)

    Google Scholar 

  59. J. Xu, L. Gao, J. Cao, W. Wang, Z. Chen, Electrochim. Acta 56, 732 (2010)

    CAS  Google Scholar 

  60. Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, J. Power Sources 195, 1757 (2010)

    CAS  Google Scholar 

  61. T.Y. Wei, C.H. Chen, K.H. Chang, S.Y. Lu, C.C. Hu, Chem. Mater. 21, 3228 (2009)

    CAS  Google Scholar 

  62. B.E. Conway, Electrochemical Supercapacitors (Springer, Boston, MA, US, 1999)

    Google Scholar 

  63. G. Wee, H.Z. Soh, Y.L. Cheah, S.G. Mhaisalkar, M. Srinivasan, J. Mater. Chem. 20, 6720 (2010)

    CAS  Google Scholar 

  64. R.N. Reddy, R.G. Reddy, J. Power Sources 156, 700 (2006)

    CAS  Google Scholar 

  65. S.W. Hwang, S.H. Hyun, J. Power Sources 172, 451 (2007)

    CAS  Google Scholar 

  66. S.-L. Kuo, N.-L. Wu, Electrochem. Solid State Lett. 6, A85 (2003)

    CAS  Google Scholar 

  67. K. Rajendra Prasad, N. Miura, Electrochem. Commun. 6, 849 (2004)

    Google Scholar 

  68. J. Chen, K. Huang, S. Liu, Electrochim. Acta 55, 1 (2009)

    CAS  Google Scholar 

  69. S. Banerjee, R. Sharma, K.K. Kar, Nanocomposites based on carbon nanomaterials and electronically nonconducting polymers, in ed. by K.K. Kar, Composite Materials (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-662-49514-8_8

  70. D. Yiǧit, F. Soysal, T. Güngör, B. Çiçek, M. Güllü, RSC Adv. 7, 41419 (2017)

    Google Scholar 

  71. N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, Electrochim. Acta 165, 338 (2015)

    CAS  Google Scholar 

  72. S.G. Mohamed, C.J. Chen, C.K. Chen, S.F. Hu, R.S. Liu, A.C.S. Appl, Mater. Interfaces 6, 22701 (2014)

    CAS  Google Scholar 

  73. Q. Hu, Z. Gu, X. Zheng, X. Zhang, Chem. Eng. J. 304, 223 (2016)

    CAS  Google Scholar 

  74. K.K. Kar, A. Hodzic, in Developments in Nanocomposites, 1st edn. (Research publishing, 2014)

    Google Scholar 

  75. J. Wang, X. Zhang, Q. Wei, H. Lv, Y. Tian, Z. Tong, X. Liu, J. Hao, H. Qu, J. Zhao, Y. Li, L. Mai, Nano Energy 19, 222 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Department of Science and Technology, India (DST/TMD/MES/2K16/37(G)), for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De, B., Banerjee, S., Verma, K.D., Pal, T., Manna, P.K., Kar, K.K. (2020). Transition Metal Oxides as Electrode Materials for Supercapacitors. In: Kar, K. (eds) Handbook of Nanocomposite Supercapacitor Materials II. Springer Series in Materials Science, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-030-52359-6_4

Download citation

Publish with us

Policies and ethics