Skip to main content

Isogeometric Shell Analysis of the Human Abdominal Wall

  • Conference paper
  • First Online:
Innovations in Biomedical Engineering (AAB 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1223))

Included in the following conference series:

Abstract

In this paper, a nonlinear isogeometric Kirchhoff–Love shell model of the human abdominal wall is proposed. Its geometry is based on in vivo measurements obtained from a polygon mesh that is transformed into a NURBS surface, and then used directly for the finite element analysis. The passive response of the abdominal wall model under uniform pressure is considered. A hyperelastic membrane model based on the Gasser–Ogden–Holzapfel tissue model is used together with the Koiter bending model to describe the material behavior. Due to the mixed material formulation, different sets of constitutive parameters are examined such that the influence of each term is analyzed. The membrane contribution of the material model has a major influence on the displacement magnitude and reflects more reliably the nonlinear character of the deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deeken, C.R., Lake, S.P.: Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. J. Mech. Behav. Biomed. Mater. 74, 411–427 (2017)

    Article  Google Scholar 

  2. Gräßel, D., Prescher, A., Fitzek, S., Keyserlingk, D.G.V., Axer, H.: Anisotropy of human linea alba: a biomechanical study. J. Surg. Res. 124(1), 118–125 (2005)

    Article  Google Scholar 

  3. Astruc, L., De Meulaere, M., Witz, J.F., Nováček, V., Turquier, F., Hoc, T., Brieu, M.: Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues. J. Mech. Behav. Biomed. Mater. 82, 45–50 (2018)

    Article  Google Scholar 

  4. Tran, D., Podwojewski, F., Beillas, P., Ottenio, M., Voirin, D., Turquier, F., Mitton, D.: Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities. J. Mech. Behav. Biomed. Mater. 60, 451–459 (2016)

    Article  Google Scholar 

  5. Grasa, J., Sierra, M., Lauzeral, N., Munoz, M.J., Miana-Mena, F.J., Calvo, B.: Active behavior of abdominal wall muscles: Experimental results and numerical model formulation. J. Mech. Behav. Biomed. Mater. 61, 444–454 (2016)

    Article  Google Scholar 

  6. Rausch, M.K., Kuhl, E.: On the effect of prestrain and residual stress in thin biological membranes. J. Mech. Phys. Solids 61(9), 1955–1969 (2013)

    Article  MathSciNet  Google Scholar 

  7. Tran, D., Mitton, D., Voirin, D., Turquier, F., Beillas, P.: Contribution of the skin, rectus abdominis and their sheaths to the structural response of the abdominal wall ex vivo. J. Biomech. 47(12), 3056–3063 (2014)

    Article  Google Scholar 

  8. Bielski, P., Lubowiecka, I.: Surface sliding in human abdominal wall numerical models: comparison of single-surface and multi-surface composites. Shell Structures: Theory and Applications, vol. 4, pp. 499-502. CRC Press, Gdańsk, (2017)

    Google Scholar 

  9. Pachera, P., Pavan, P.G., Todros, S., Cavinato, C., Fontanella, C.G., Natali, A.N.: A numerical investigation of the healthy abdominal wall structures. J. Biomech. 49(9), 1818–1823 (2016)

    Google Scholar 

  10. Förstemann, T., Trzewik, J., Holste, J., Batke, B., Konerding, M.A., Wolloscheck, T., Hartung, C.: Forces and deformations of the abdominal wall. A mechanical and geometrical approach to the linea alba. J. Biomech. 44(4), 600–606 (2011)

    Google Scholar 

  11. Lubowiecka, I., Tomaszewska, A., Szepietowska, K., Szymczak, C., Lichodziejewska-Niemierko, M., Chmielewski, M.: Membrane model of human abdominal wall. Simulations vs. in vivo measurements, pp. 503–506 (2018)

    Google Scholar 

  12. Hernández, B., Pena, E., Pascual, G., Rodriguez, M., Calvo, B., Doblaré, M., Bellón, J.M.: Mechanical and histological characterization of the abdominal muscle. A previous step to modelling hernia surgery. J. Mech. Behav. Biomed. Mater. 4(3), 392–404 (2011)

    Google Scholar 

  13. Hernández-Gascón, B., Mena, A., Pena, E., Pascual, G., Bellón, J.M., Calvo, B.: Understanding the passive mechanical behavior of the human abdominal wall. Ann. Biomed. Eng. 41(2), 433–444 (2013)

    Google Scholar 

  14. Simon-Allue, R., Montiel, J.M.M., Bellon, J.M., Calvo, B.: Developing a new methodology to characterize in vivo the passive mechanical behavior of abdominal wall on an animal model. J. Mech. Behav. Biomed. Mater. 51, 40–49 (2015)

    Google Scholar 

  15. Kiendl, J., Bletzinger, K.U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Eng. 198(49–52), 3902–3914 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)

    Google Scholar 

  17. Morganti, S., Auricchio, F., Benson, D.J., Gambarin, F.I., Hartmann, S., Hughes, T.J.R., Reali, A.: Patient-specific isogeometric structural analysis of aortic valve closure. Comput. Methods Appl. Mech. Eng. 284, 508–520 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Borden, M.J., Scott, M.A., Evans, J.A., Hughes, T.J.: Isogeometric finite element data structures based on Bézier extraction of NURBS. Int. J. Numer. Methods Eng. 87(1–5), 15–47 (2011)

    Article  Google Scholar 

  19. Sauer, R.A., Duong, T.X.: On the theoretical foundations of thin solid and liquid shells. Math. Mech. Solids 22(3), 343–371 (2017)

    Article  MathSciNet  Google Scholar 

  20. Sauer, R.A.: On the computational modeling of lipid bilayers using thin-shell theory. The Role of Mechanics in the Study of Lipid Bilayers, pp. 221–286. Springer, Berlin (2018)

    Google Scholar 

  21. Roohbakhshan, F., Duong, T.X., Sauer, R.A.: A projection method to extract biological membrane models from 3D material models. J. Mech. Behav. Biomed. Mater. 58, 90–104 (2016)

    Google Scholar 

  22. Roohbakhshan, F., Sauer, R.A.: Efficient isogeometric thin shell formulations for soft biological materials. Biomech. Model. Mechanobiol. 16(5), 1569–1597 (2017)

    Google Scholar 

  23. Steigmann, D.: Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J. Elast. 111(1), 91–107 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Google Scholar 

  25. Duong, T.X., Roohbakhshan, F., Sauer, R.A.: A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput. Methods Appl. Mech. Eng. 316, 43–83 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Szymczak, C., Lubowiecka, I., Tomaszewska, A., Śmietański, M.: Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clin. Biomech. 27(2), 105–110 (2012)

    Google Scholar 

  27. Song, C., Alijani, A., Frank, T., Hanna, G.B., Cuschieri, A.: Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg. Endosc. 20(6), 987–990 (2006)

    Google Scholar 

  28. Kroon, M., Holzapfel, G.A.: Elastic properties of anisotropic vascular membranes examined by inverse analysis. Comput. Methods Appl. Mech. Eng. 198(45–46), 3622–3632 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Kroon, M.: A numerical framework for material characterisation of inhomogeneous hyperelastic membranes by inverse analysis. J. Comput. Appl. Math. 234(2), 563–578 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the National Science Centre (Poland) under [Grant No. 2017/27/B/ST8/02518] and the German Science Foundation (DFG) under grant GSC 111. Calculations have been carried out at the Academic Computer Centre in Gdańsk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Borzeszkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borzeszkowski, B., Duong, T.X., Sauer, R.A., Lubowiecka, I. (2021). Isogeometric Shell Analysis of the Human Abdominal Wall. In: Gzik, M., Paszenda, Z., Pietka, E., Tkacz, E., Milewski, K. (eds) Innovations in Biomedical Engineering. AAB 2020. Advances in Intelligent Systems and Computing, vol 1223. Springer, Cham. https://doi.org/10.1007/978-3-030-52180-6_2

Download citation

Publish with us

Policies and ethics