Skip to main content

The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes

  • Chapter
  • First Online:
Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 69))

Abstract

Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Kobayashi T, Saito T (2005) Properties of a novel intracellular poly(3-hydroxybutyrate) depolymerase with high specific activity (PhaZd) in Wautersia eutropha H16. J Bacteriol 187:6982–6990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abell BM, Holbrook LA, Abenes M, Murphy DJ, Hills MJ, Moloney MM (1997) Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9(8):1481–1493. https://doi.org/10.1105/tpc.9.8.1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acevedo F, Rubilar M, Shene C, Navarrete P, Romero F, Rabert C, Jolivet P, Valot B, Chardot T (2012) Seed oil bodies from Gevuina avellana and Madia sativa. J Agric Food Chem 60:6994–7004

    CAS  PubMed  Google Scholar 

  • Agarwal AK et al (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31:21

    CAS  PubMed  Google Scholar 

  • Aizaki H, Lee K-J, Sung VMH, Ishiko H, Lai MMC (2004) Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology 324:450–461

    CAS  PubMed  Google Scholar 

  • Alvarez HM (2016) Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 120:28–39

    CAS  PubMed  Google Scholar 

  • Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18:577–584

    CAS  PubMed  Google Scholar 

  • Arrese EL, Rivera L, Masakazu H, Mirza S, Hartson SD, Weintraub S, Soulages JL (2008) Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes. Arch Biochem Biophys 473:42–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181:6441–6448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud J-M, Chardot T (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6:1450–1459

    CAS  PubMed  Google Scholar 

  • Barka F, Angstenberger M, Ahrendt T, Lorenzen W, Bode HB, Büchel C (2016) Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1861:239–248

    CAS  PubMed  Google Scholar 

  • Bartz R, Li W-H, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RGW, Liu P, Chapman KD (2007) Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48:837–847

    CAS  PubMed  Google Scholar 

  • Baud S, Dichow NR, Kelemen Z, D’andréa S, To A, Berger N, Canonge M, Kronenberger J, Viterbo D, Dubreucq B, Lepiniec L, Chardot T, Miquel M (2009) Regulation of HSD1 in seeds of Arabidopsis thaliana. Plant Cell Physiol 50:1463–1478

    CAS  PubMed  Google Scholar 

  • Beck R, Ravet M, Wieland FT, Cassel D (2009) The COPI system: molecular mechanisms and function. FEBS Lett 583:2701–2709

    CAS  PubMed  Google Scholar 

  • Beilstein F et al (2013) Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion. PLoS One 8(1):e53017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beller M, Riedel D, Jänsch L, Dieterich G, Wehland J, Jäckle H, Kühnlein RP (2006) Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 5:1082–1094

    CAS  PubMed  Google Scholar 

  • Beller M, Sztalryd C, Southall N, Bell M, Jäckle H, Auld DS, Oliver B (2008) COPI complex is a regulator of lipid homeostasis. PLoS Biol 6:e292

    PubMed  PubMed Central  Google Scholar 

  • Beller M, Bulankina AV, Hsiao H-H, Urlaub H, Jäckle H, Kühnlein RP (2010) PERILIPIN-dependent control of lipid droplet structure and fat storage in drosophila. Cell Metab 12:521–532

    CAS  PubMed  Google Scholar 

  • Bendif EM, Probert I, Schroeder DC, De Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25:1763–1776

    CAS  Google Scholar 

  • Bersuker K, Olzmann JA (2017) Establishing the lipid droplet proteome: mechanisms of lipid droplet protein targeting and degradation. Biochim Biophys Acta 1862:1166–1177

    CAS  PubMed Central  Google Scholar 

  • Berthelot K, Lecomte S, Estevez Y, Zhendre V, Henry S, Thévenot J, Dufourc EJ, Alves ID, Peruch F (2014) Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. Biochim Biophys Acta Biomembr 1838:287–299

    CAS  Google Scholar 

  • Bi J, Xiang Y, Chen H, Liu Z, Grönke S, Kühnlein RP, Huang X (2012) Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J Cell Sci 125:3568

    CAS  PubMed  Google Scholar 

  • Bi K et al (2016) Integrated omics study of lipid droplets from Plasmodiophora brassicae. Sci Rep 6:36965–36965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bigogno C et al (2002) Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chlorophyceae): radiolabeling studies. Lipids 37(2):209–216

    CAS  PubMed  Google Scholar 

  • Bindesbøll C et al (2013) Fatty acids regulate perilipin5 in muscle by activating PPARδ. J Lipid Res 54(7):1949–1963

    PubMed  PubMed Central  Google Scholar 

  • Blouin CM et al (2010) Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J Lipid Res 51(5):945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchoux J et al (2011) The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol Cell 103(Pt 11):499–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer A, Dumans A, Beaumont E, Etienne L, Roingeard P, Meunier J-C (2014) The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles. J Biol Chem 289:18904–18913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brasaemle DL et al (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279(45):46835–46842

    CAS  PubMed  Google Scholar 

  • Brasaemle DL, Wolins NE (2016) Isolation of lipid droplets from cells by density gradient centrifugation. Curr Protoc Cell Biol 72:3.15.11–13.15.13

    Google Scholar 

  • Bréhélin C, Kessler F, Van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    PubMed  Google Scholar 

  • Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci Rep 6:26612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule J-J, Bréhélin C (2017) Proteomic analysis of lipid droplets from Arabidopsis aging leaves brings new insight into their biogenesis and functions. Front Plant Sci 8:894

    PubMed  PubMed Central  Google Scholar 

  • Bussell R, Eliezer D (2003) A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778

    CAS  PubMed  Google Scholar 

  • Cai Y, Goodman JM, Pyc M, Mullen RT, Dyer JM, Chapman KD (2015) Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. Plant Cell 27:2616–2636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caire-Brändli I, Papadopoulos A, Malaga W, Marais D, Canaan S, Thilo L, De Chastellier C (2014) Reversible lipid accumulation and associated division arrest of mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis. Infect Immun 82:476–490

    PubMed  PubMed Central  Google Scholar 

  • Camus G, Herker E, Modi AA, Haas JT, Ramage HR, Farese RV, Ott M (2013) Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem 288:9915–9923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castorena KM, Stapleford KA, Miller DJ (2010) Complementary transcriptomic, lipidomic, and targeted functional genetic analyses in cultured Drosophila cells highlight the role of glycerophospholipid metabolism in Flock House virus RNA replication. BMC Genomics 11:183–183

    PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith T (1986) The kingdom Chromista: origin and systematics. Biopress, Bristol

    Google Scholar 

  • Cavalier-Smith T (2018) Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 255:297–357

    CAS  PubMed  Google Scholar 

  • Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16:1783–1795

    CAS  PubMed  Google Scholar 

  • Chanarin I et al (1975) Neutral-lipid storage disease: a new disorder of lipid metabolism. Br Med J 1(5957):553–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang BH-J, Li L, Paul A, Taniguchi S, Nannegari V, Heird WC, Chan L (2006) Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol Cell Biol 26:1063–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from yeast to man. J Lipid Res 53:215–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla A et al (2003) PPARδ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci U S A 100(3):1268–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JC, Tsai CC, Tzen JT (1999) Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol 40:1079–1086

    CAS  PubMed  Google Scholar 

  • Chen Z, Du S, Fang S (2012) gp78: a multifaceted ubiquitin ligase that integrates a unique protein degradation pathway from the endoplasmic reticulum. Curr Protein Pept Sci 13:414–424

    CAS  PubMed  Google Scholar 

  • Chen W, Chang B, Wu X, Li L, Sleeman M, Chan L (2013) Inactivation of Plin4 downregulates Plin5 and reduces cardiac lipid accumulation in mice. Am J Physiol-Endocrinol Metab 304:E770–E779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ding Y, Yang L, Yu J, Liu G, Wang X, Zhang S, Yu D, Song L, Zhang H, Zhang C, Huo L, Huo C, Wang Y, Du Y, Zhang H, Zhang P, Na H, Xu S, Zhu Y, Xie Z, He T, Zhang Y, Wang G, Fan Z, Yang F, Liu H, Wang X, Zhang X, Zhang MQ, Li Y, Steinbüchel A, Fujimoto T, Cichello S, Yu J, Liu P (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res 42:1052–1064

    CAS  PubMed  Google Scholar 

  • Cho SY et al (2007) Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J Biol Chem 282(4):2456–2465

    CAS  PubMed  Google Scholar 

  • Choi K, Kim H, Kang H, Lee S-Y, Lee SJ, Back SH, Lee SH, Kim MS, Lee JE, Park JY, Kim J, Kim S, Song J-H, Choi Y, Lee S, Lee H-J, Kim JH, Cho S (2014) Regulation of diacylglycerol acyltransferase 2 protein stability by gp78-associated endoplasmic-reticulum-associated degradation. FEBS J 281:3048–3060

    CAS  PubMed  Google Scholar 

  • Choudhary V, Golden A, Prinz WA (2016) Keeping FIT, storing fat: lipid droplet biogenesis. Worm 5:e1170276

    PubMed  PubMed Central  Google Scholar 

  • Chughtai AA, Kaššák F, Kostrouchová M, Novotný JP, Krause MW, Saudek V, Kostrouch Z, Kostrouchová M (2015) Perilipin-related protein regulates lipid metabolism in C. elegans. PeerJ 3:e1213

    PubMed  PubMed Central  Google Scholar 

  • Chung J, Wu X, Lambert TJ, Lai ZW, Walther TC, Farese RV (2019) LDAF1 and seipin form a lipid droplet assembly complex. Dev Cell 51:551–563.e557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crunk AE et al (2013) Dynamic regulation of hepatic lipid droplet properties by diet. PLoS One 8(7):e67631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui S, Hayashi Y, Otomo M, Mano S, Oikawa K, Hayashi M, Nishimura M (2016) Sucrose production mediated by lipid metabolism suppresses physical interaction of peroxisomes and oil bodies during germination of Arabidopsis thaliana. J Biol Chem 291:19734–19745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283:17065–17074

    CAS  PubMed  Google Scholar 

  • Dahlhoff M et al (2015) Characterization of the sebocyte lipid droplet proteome reveals novel potential regulators of sebaceous lipogenesis. Exp Cell Res 332(1):146–155

    CAS  PubMed  Google Scholar 

  • Dalen KT et al (2007) LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids 1771(2):210–227

    CAS  Google Scholar 

  • D’avila H, Freire-De-Lima CG, Roque NR, Teixeira L, Barja-Fidalgo C, Silva AR, Melo RCN, Dosreis GA, Castro-Faria-Neto HC, Bozza PT (2011) Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of apoptotic cells are associated with prostaglandin E2 generation and increased parasite growth. J Infect Dis 204:951–961

    PubMed  Google Scholar 

  • D’andrea S (2016) Lipid droplet mobilization: the different ways to loosen the purse strings. Biochimie 120:17–27

    PubMed  Google Scholar 

  • Davidi L, Katz A, Pick U (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta 236:19–33

    CAS  PubMed  Google Scholar 

  • Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79

    CAS  PubMed  Google Scholar 

  • Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Aiese Cigliano R, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A (2018a) Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal Res 35:125–141

    Google Scholar 

  • Dellero Y, Rose S, Metton C, Morabito C, Lupette J, Jouhet J, Maréchal E, Rébeillé F, Amato A (2018b) Ecophysiology and lipid dynamics of a eukaryotic mangrove decomposer. Environ Microbiol 20:3057–3068

    CAS  PubMed  Google Scholar 

  • Den Brok MH, Raaijmakers TK, Collado-Camps E, Adema GJ (2018) Lipid droplets as immune modulators in myeloid cells. Trends Immunol 39:380–392

    Google Scholar 

  • Dennis D et al (1998) Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 64(2):177–186

    CAS  PubMed  Google Scholar 

  • Dias-Lopes G, Borges-Veloso A, Saboia-Vahia L, Padrón G, De Faria Castro CL, Guimarães ACR, Britto C, Cuervo P, De Jesus JB (2016) Proteomics reveals major components of oogenesis in the reproductive tract of sugar-fed Anopheles aquasalis. Parasitol Res 115:1977–1989

    PubMed  Google Scholar 

  • Ding Y, Wu Y, Zeng R, Liao K (2012a) Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse. Acta Biochim Biophys Sin 44:394–406

    CAS  PubMed  Google Scholar 

  • Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, Peng G, Chen Y, Zhang H, Yu J, Hang H, Wu P, Yang F, Yang H, Steinbüchel A, Liu P (2012b) Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res 53:399–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorfman ML et al (1974) Ichthyosiform dermatosis with systemic lipidosis. Arch Dermatol 110(2):261–266

    CAS  PubMed  Google Scholar 

  • Du X, Barisch C, Paschke P, Herrfurth C, Bertinetti O, Pawolleck N, Otto H, Rühling H, Feussner I, Herberg FW, Maniak M (2013) Dictyostelium lipid droplets host novel proteins. Eukaryot Cell 12:1517–1529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edvardsson U et al (2006) PPARα activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes. J Lipid Res 47(2):329–340

    CAS  PubMed  Google Scholar 

  • Eggers J, Steinbüchel A (2013) Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme a (CoA) via crotonyl-CoA. J Bacteriol 195:3213–3223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichmann TO et al (2015) ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6. J Lipid Res 56(10):1972–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faucher P, Poitou C (2016) Physiopathologie de l’obésité. Rev Rhum Monogr 83:6–12

    Google Scholar 

  • Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang H (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, Graham I, Baker A, Holdsworth M (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J 21:2912–2922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frandsen G, Müller-Uri F, Nielsen M, Mundy J, Skriver K (1996) Novel plant Ca-binding protein expressed in response to abscisic acid and osmotic stress. J Biol Chem 271:343–348

    CAS  PubMed  Google Scholar 

  • Fujimoto Y et al (2004) Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochimica et Biophysica Acta (BBA) - Mol Cell Res 1644(1):47–59

    CAS  Google Scholar 

  • Füssy Z, Oborník M (2018) Complex Endosymbioses I: from primary to complex plastids, multiple independent events. In: Maréchal E (ed) Plastids: methods and protocols. Springer US, New York, NY, pp 17–35

    Google Scholar 

  • Gaunt ER, Zhang Q, Cheung W, Wakelam MJO, Lever AML, Desselberger U (2013) Lipidome analysis of rotavirus-infected cells confirms the close interaction of lipid droplets with viroplasms. J Gen Virol 94:1576–1586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgieva D, Schmitt V, Leal-Calderon F, Langevin D (2009) On the possible role of surface elasticity in emulsion stability. Langmuir 25:5565–5573

    CAS  PubMed  Google Scholar 

  • Gerngross TU, Reilly P, Stubbe J, Sinskey AJ, Peoples OP (1993) Immunocytochemical analysis of poly-beta-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of PHB granules. J Bacteriol 175:5289–5293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R (2008) CGI-58, the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. J Biol Chem 283:24525–24533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT (2016) Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol 170:2052–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gocze PM, Freeman DA (1994) Factors underlying the variability of lipid droplet fluorescence in MA-10 leydig tumor cells. Cytometry 17:151–158

    CAS  PubMed  Google Scholar 

  • Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG, Li P (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195:953–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goold H, Beisson F, Peltier G, Li-Beisson Y (2015) Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep 34:545–555

    CAS  PubMed  Google Scholar 

  • Grahn THM, Zhang Y, Lee M-J, Sommer AG, Mostoslavsky G, Fried SK, Greenberg AS, Puri V (2013) FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Biochem Biophys Res Commun 432:296–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Granneman JG, Moore H-PH, Krishnamoorthy R, Rathod M (2009) Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 284:34538–34544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Granneman JG, Kimler VA, Zhang H, Ye X, Luo X, Postlethwait JH, Thummel R (2017) Lipid droplet biology and evolution illuminated by the characterization of a novel perilipin in teleost fish. elife 6:e21771

    PubMed  PubMed Central  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    CAS  PubMed  Google Scholar 

  • Greenberg AS et al (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266(17):11341–11346

    CAS  PubMed  Google Scholar 

  • Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta 1811:1165–1176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gromova M, Guillermo A, Bayle P-A, Bardet M (2015) In vivo measurement of the size of oil bodies in plant seeds using a simple and robust pulsed field gradient NMR method. Eur Biophys J 44:121–129

    CAS  PubMed  Google Scholar 

  • Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B, Lei C, Ito T, Yaxiaer Y, Kobayashi H, Jiang Y, Tanaka Y, Ozeki Y, Goda K (2017) High-throughput label-free screening of euglena gracilis with optofluidic time-stretch quantitative phase microscopy. SPIE BiOS 12

    Google Scholar 

  • Gupta P, Kaur G (2005) Chanarin Dorfman syndrome neonatal diagnosis and 3-year follow-up. Indian Pediatr 42:1054–1055

    PubMed  Google Scholar 

  • Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13:631–639

    CAS  PubMed  Google Scholar 

  • Han J et al (2007) Molecular characterization of the phaEC(Hm) genes, required for biosynthesis of Poly(3-Hydroxybutyrate) in the extremely halophilic archaeon haloarcula marismortui. Appl Environ Microbiol 73(19):6058–6065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blée E (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281:33140–33151

    CAS  PubMed  Google Scholar 

  • Harchouni S, Field B, Menand B (2018) AC-202, a highly effective fluorophore for the visualization of lipid droplets in green algae and diatoms. Biotechnol Biofuels 11:120

    PubMed  PubMed Central  Google Scholar 

  • Hayashi YK et al (2009) Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 119(9):2623–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haywood GW, Anderson AJ, Dawes EA (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6

    CAS  Google Scholar 

  • Hehlert P, Hofferek V, Heier C, Eichmann TO, Riedel D, Rosenberg J, Takaćs A, Nagy HM, Oberer M, Zimmermann R, Kühnlein RP (2019) The α/β-hydrolase domain-containing 4- and 5-related phospholipase Pummelig controls energy storage in Drosophila. J Lipid Res 60:1365–1378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henne WM, Reese ML, Goodman JM (2018) The assembly of lipid droplets and their roles in challenged cells. EMBO J 37

    Google Scholar 

  • Hickenbottom SJ et al (2004) Structure of a lipid droplet protein: the PAT family member TIP47. Structure 12(7):1199–1207

    CAS  PubMed  Google Scholar 

  • Horn PJ, James CN, Gidda SK, Kilaru A, Dyer JM, Mullen RT, Ohlrogge JB, Chapman KD (2013) Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiol 162:1926–1936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houten SM, Wanders RJA (2010) A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis 33:469–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh K, Huang AHC (2004) Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol 136:3427–3434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Binns D, Reese ML (2017) The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem 292:11009–11020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AH (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiol 110:1055–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AHC (2018) Plant lipid droplets and their associated proteins: potential for rapid advances ([OPEN]). Plant Physiol 176:1894–1918

    PubMed  Google Scholar 

  • Huang M-D, Huang AHC (2015) Bioinformatics reveal five lineages of oleosins and the mechanism of lineage evolution related to structure/function from green algae to seed plants. Plant Physiol 169:453–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert F, Poisson L, Loiseau C, Gauvry L, Pencréac’h G, Hérault J, Ergan F (2017) Lipids and lipolytic enzymes of the microalga Isochrysis galbana. OCL 24:D407

    Google Scholar 

  • Ikari N, Shimizu A, Asano T (2018) Lysosomal acid lipase deficiency in Japan: a case report of siblings and a literature review of cases in Japan. J Nippon Med Sch 85:131–137

    PubMed  Google Scholar 

  • Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS (2007) Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 132:1947–1954

    CAS  PubMed  Google Scholar 

  • Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, Nawata H (2002) ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol-Endocrinol Metab 283:E775–E783

    CAS  PubMed  Google Scholar 

  • Ivashov VA, Grillitsch K, Koefeler H, Leitner E, Baeumlisberger D, Karas M, Daum G (2013) Lipidome and proteome of lipid droplets from the methylotrophic yeast Pichia pastoris. Biochim Biophys Acta 1831:282–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson LP (2014) Structure and mechanism of COPI vesicle biogenesis. Curr Opin Cell Biol 29:67–73

    CAS  PubMed  Google Scholar 

  • Jambunathan S, Yin J, Khan W, Tamori Y, Puri V (2011) FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One 6:e28614

    CAS  PubMed  PubMed Central  Google Scholar 

  • James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, Dyer JM, Anderson RGW, Chapman KD (2010) Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. Proc Natl Acad Sci USA 107:17833–17838

    CAS  PubMed  PubMed Central  Google Scholar 

  • James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, Djordjevic MA (2011) Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour Technol 102:3343–3351

    CAS  PubMed  Google Scholar 

  • Javee A, Sulochana SB, Pallissery SJ, Arumugam M (2016) Major lipid body protein: a conserved structural component of lipid body accumulated during abiotic stress in S. quadricauda CASA-CC202. Front Energy Res 4

    Google Scholar 

  • Jiang P-L, Pasaribu B, Chen C-S (2014) Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLoS One 9:e87416

    PubMed  PubMed Central  Google Scholar 

  • Johnson MR, Stephenson RA, Ghaemmaghami S, Welte MA (2018) Developmentally regulated H2Av buffering via dynamic sequestration to lipid droplets in Drosophila embryos. elife 7:e36021

    PubMed  PubMed Central  Google Scholar 

  • Jolivet P, Roux E, D’andrea S, Davanture M, Negroni L, Zivy M, Chardot T (2004) Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 42:501–509

    CAS  PubMed  Google Scholar 

  • Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, D’andréa S, Chardot T, Nesi N (2009) Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9:3268–3284

    CAS  PubMed  Google Scholar 

  • Jolivet P, Acevedo F, Boulard C, D’andréa S, Faure J-D, Kohli A, Nesi N, Valot B, Chardot T (2013) Crop seed oil bodies: from challenges in protein identification to an emerging picture of the oil body proteome. Proteomics 13:1836–1849

    CAS  PubMed  Google Scholar 

  • Jordans GHW (1953) The familial occurrence of fat containing vacuoles in the Leukocytes diagnosed in two brothers suffering from Dystrophia Musculorum Progressiva (ERB). Acta Med Scand 145(6):419–423

    CAS  PubMed  Google Scholar 

  • Kalscheuer R, Wältermann M, Alvarez H, Steinbüchel A (2001) Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol 177:20–28

    CAS  PubMed  Google Scholar 

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    CAS  PubMed  Google Scholar 

  • Kanshin E et al (2009) The stoichiometry of protein phosphorylation in adipocyte lipid droplets: analysis by N-terminal isotope tagging and enzymatic dephosphorylation. Proteomics 9(22):5067–5077

    CAS  PubMed  Google Scholar 

  • Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6:4586–4598

    CAS  PubMed  Google Scholar 

  • Kellogg RB, Patton JS (1983) Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Mar Biol 75:137–149

    CAS  Google Scholar 

  • Kelly AA, Feussner I (2016) Oil is on the agenda: lipid turnover in higher plants. Biochim Biophys Acta 1861:1253–1268

    CAS  PubMed  Google Scholar 

  • Kelly AA, Quettier A-L, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157:866–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelia H, Duelund L, Pakkanen KI, Ipsen JH (2010) Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLoS One 5:e12811

    PubMed  PubMed Central  Google Scholar 

  • Khor VK et al (2014) The proteome of cholesteryl-ester-enriched versus triacylglycerolenriched lipid droplets. PLoS One 9(8):e105047–e105047

    PubMed  PubMed Central  Google Scholar 

  • Kilaru A, Cao X, Dabbs PB, Sung H-J, Rahman MM, Thrower N, Zynda G, Podicheti R, Ibarra-Laclette E, Herrera-Estrella L, Mockaitis K, Ohlrogge JB (2015) Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea americana mesocarp. BMC Plant Biol 15:203–203

    PubMed  PubMed Central  Google Scholar 

  • Kim CA et al (2008) Association of a homozygous nonsense caveolin-1 mutation with berardinelli-seip congenital lipodystrophy. J Clin Endocrinol Metabol 93(4):1129–1134

    CAS  Google Scholar 

  • Kim M-J, Wainwright HC, Locketz M, Bekker L-G, Walther GB, Dittrich C, Visser A, Wang W, Hsu F-F, Wiehart U, Tsenova L, Kaplan G, Russell DG (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2:258–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel AR, Sztalryd C (2014) Perilipin 5, a lipid droplet protein adapted to mitochondrial energy utilization. Curr Opin Lipidol 25:110–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel AR, Sztalryd C (2016) The perilipins: major cytosolic lipid droplet–associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr 36:471–509

    CAS  PubMed  Google Scholar 

  • Kimmel AR, Brasaemle DL, Mcandrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51:468–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch B, Schmidt C, Daum G (2014) Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 38:892–915

    CAS  PubMed  Google Scholar 

  • Kong F, Romero IT, Warakanont J, Li-Beisson Y (2018) Lipid catabolism in microalgae. New Phytol 218:1340–1348

    CAS  PubMed  Google Scholar 

  • Kory N, Farese RV, Walther TC (2016) Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol 26:535–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer DA et al (2018) Fasting and refeeding induces changes in the mouse hepatic lipid droplet proteome. J Proteome 181:213–224

    CAS  Google Scholar 

  • Kreimer G (2009) The green algal eyespot apparatus: a primordial visual system and more? Curr Genet 55:19–43

    CAS  PubMed  Google Scholar 

  • Kretzschmar FK, Mengel LF, Müller A, Schmitt K, Blersch KF, Valerius O, Braus G, Ischebeck T (2018) PUX10 is a lipid droplet-localized scaffold protein that interacts with CDC48 and is involved in the degradation of lipid droplet proteins. Plant Cell 30:2137–2160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuerschner L, Moessinger C, Thiele C (2007) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–352

    PubMed  Google Scholar 

  • Kumar Y, Cocchiaro J, Valdivia RH (2006) The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol 16:1646–1651

    CAS  PubMed  Google Scholar 

  • Kuntam S, Puskás LG, Ayaydin F (2015) Characterization of a new class of blue-fluorescent lipid droplet markers for live-cell imaging in plants. Plant Cell Rep 34:655–665

    CAS  PubMed  Google Scholar 

  • Laibach N, Post J, Twyman RM, Gronover CS, Prüfer D (2015) The characteristics and potential applications of structural lipid droplet proteins in plants. J Biotechnol 201:15–27

    CAS  PubMed  Google Scholar 

  • Langhi C et al (2014) Perilipin-5 is regulated by statins and controls triglyceride contents in the hepatocyte. J Hepatol 61(2):358–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson S et al (2012) Characterization of the lipid droplet proteome of a clonal insulin-producing β-cell line (INS-1 832/13). J Proteome Res 11(2):1264–1273

    CAS  PubMed  Google Scholar 

  • Le Cadre V, Debenay J-P (2006) Morphological and cytological responses of Ammonia (foraminifera) to copper contamination: implication for the use of foraminifera as bioindicators of pollution. Environ Pollut 143(2):304–317

    PubMed  Google Scholar 

  • Leber R, Zinser E, Paltauf F, Daum G, Zellnig G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428

    CAS  PubMed  Google Scholar 

  • Lecoeur H et al (2013) Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes. PLoS Negl Trop Dis 7(6):e2276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kong J, Jang JY, Han JS, Ji Y, Lee J, Kim JB (2014) Lipid droplet protein LID-1 mediates ATGL-1-dependent lipolysis during fasting in Caenorhabditis elegans. Mol Cell Biol 34:4165–4176

    PubMed  PubMed Central  Google Scholar 

  • Lee YK, Sohn JH, Han JS, Park YJ, Jeon YG, Ji Y, Dalen KT, Sztalryd C, Kimmel AR, Kim JB (2018) Perilipin 3 deficiency stimulates thermogenic beige adipocytes through PPARα activation. Diabetes 67:791–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lefèvre C et al (2001) Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in chanarin-dorfman syndrome. Am J Hum Genet 69(5):1002–1012

    PubMed  PubMed Central  Google Scholar 

  • LeKieffre C et al (2017) Surviving anoxia in marine sediments: the metabolic response of ubiquitous benthic foraminifera (Ammonia tepida). PLoS One 12(5):e0177604–e0177604

    PubMed  PubMed Central  Google Scholar 

  • Lersten NR, Czlapinski AR, Curtis JD, Freckmann R, Horner HT (2006) Oil bodies in leaf mesophyll cells of angiosperms: overview and a selected survey. Am J Bot 93:1731–1739

    PubMed  Google Scholar 

  • Leterrier M, Calleja P, Maréchal E (2015) Modified algae strain and method of triacylglycerol accumulation using said strain. Patent. WO2015008160A2

    Google Scholar 

  • Li Z, Thiel K, Thul PJ, Beller M, Kühnlein RP, Welte MA (2012) Lipid droplets control the maternal histone supply of Drosophila embryos. Curr Biol 22:2104–2113

    PubMed  PubMed Central  Google Scholar 

  • Li X, Pan Y, Hu H (2018) Identification of the triacylglycerol lipase in the chloroplast envelope of the diatom Phaeodactylum tricornutum. Algal Res 33:440–447

    Google Scholar 

  • Lin L-J, Liao P-C, Yang H-H, Tzen JTC (2005) Determination and analyses of the N-termini of oil-body proteins, steroleosin, caleosin and oleosin. Plant Physiol Biochem 43:770–776

    CAS  PubMed  Google Scholar 

  • Lin IP, Jiang P-L, Chen C-S, Tzen JTC (2012) A unique caleosin serving as the major integral protein in oil bodies isolated from Chlorella sp. cells cultured with limited nitrogen. Plant Physiol Biochem 61:80–87

    CAS  PubMed  Google Scholar 

  • Lin P, Chen X, Moktan H, Arrese EL, Duan L, Wang L, Soulages JL, Zhou DH (2014) Membrane attachment and structure models of lipid storage droplet protein 1. Biochim Biophys Acta 1838:874–881

    CAS  PubMed  Google Scholar 

  • Liu P et al (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279(5):3787–3792

    CAS  PubMed  Google Scholar 

  • Liu H, Wang C, Chen F, Shen S (2015) Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content. J Proteome 113:403–414

    CAS  Google Scholar 

  • Low KL, Shui G, Natter K, Yeo WK, Kohlwein SD, Dick T, Rao SPS, Wenk MR (2010) Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guérin. J Biol Chem 285:21662–21670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Wang X, Balamurugan S, Yang W-D, Liu J-S, Dong H-P, Li H-Y (2017) Identification of a putative seipin ortholog involved in lipid accumulation in marine microalga Phaeodactylum tricornutum. J Appl Phycol 29:2821–2829

    CAS  Google Scholar 

  • Lundin C, Nordström R, Wagner K, Windpassinger C, Andersson H, Von Heijne G, Nilsson I (2006) Membrane topology of the human seipin protein. FEBS Lett 580:2281–2284

    CAS  PubMed  Google Scholar 

  • Luo M, Fadeev EA, Groves JT (2005) Mycobactin-mediated iron acquisition within macrophages. Nat Chem Biol 1:149

    CAS  PubMed  Google Scholar 

  • Lupette J, Maréchal E (2018) Phytoplankton glycerolipids: challenging but promising prospects from biomedicine to green chemistry and biofuels. Blue Biotechnology

    Google Scholar 

  • Lupette J, Lami R, Krasovec M, Grimsley N, Moreau H, Piganeau G, Sanchez-Ferandin S (2016) Marinobacter dominates the bacterial community of the Ostreococcus tauri phycosphere in culture. Front Microbiol 7:1414

    PubMed  PubMed Central  Google Scholar 

  • Lupette J, Jaussaud A, Seddiki K, Morabito C, Brugière S, Schaller H, Kuntz M, Putaux J-L, Jouneau P-H, Rébeillé F, Falconet D, Couté Y, Jouhet J, Tardif M, Salvaing J, Maréchal E (2019) The architecture of lipid droplets in the diatom Phaeodactylum tricornutum. Algal Res 38:101415

    Google Scholar 

  • Madrigal-Matute J, Cuervo AM (2016) Regulation of liver metabolism by autophagy. Gastroenterology 150:328–339

    CAS  PubMed  Google Scholar 

  • Maeda Y, Sunaga Y, Yoshino T, Tanaka T (2014) Oleosome-associated protein of the oleaginous diatom Fistulifera solaris contains an endoplasmic reticulum-targeting signal sequence. Mar Drugs 12:3892–3903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magré J, Delépine M, Khallouf E, Gedde-Dahl T Jr, Van Maldergem L, Sobel E, Papp J, Meier M, Mégarbané A, BWG, Lathrop M, Capeau J (2001) Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365

    PubMed  Google Scholar 

  • Malchow D, Lüderitz O, Westphal O, Gerisch G, Riedeal V (1967) Polysaccharide in vegetativen und aggregationsreifen Amöben von Dictyostelium discoideum. Eur J Biochem 2:469–479

    CAS  PubMed  Google Scholar 

  • Mandard S, Müller M, Kersten S (2004) Peroxisome proliferator-activated receptor α target genes. Cell Mol Life Sci 61(4):393–416

    CAS  PubMed  Google Scholar 

  • Maréchal E (2018) Primary endosymbiosis: emergence of the primary chloroplast and the chromatophore, two independent events. In: Maréchal E (ed) Plastids: methods and protocols. Springer, New York, pp 3–16

    Google Scholar 

  • Marlowe IT, Brassell SC, Eglinton G, Green JC (1984a) Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem 6:135–141

    CAS  Google Scholar 

  • Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984b) Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. Br Phycol J 19:203–216

    Google Scholar 

  • Mayer SV, Tesh RB, Vasilakis N (2017) The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers. Acta Trop 166:155–163

    PubMed  Google Scholar 

  • Mcmanaman JL, Bales ES, Orlicky DJ, Jackman M, Maclean PS, Cain S, Crunk AE, Mansur A, Graham CE, Bowman TA, Greenberg AS (2013) Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J Lipid Res 54:1346–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melo RCN, Weller PF (2016) Lipid droplets in leukocytes: organelles linked to inflammatory responses. Exp Cell Res 340:193–197

    CAS  PubMed  Google Scholar 

  • Menon D, Singh K, Pinto SM, Nandy A, Jaisinghani N, Kutum R, Dash D, Prasad TSK, Gandotra S (2019) Quantitative lipid droplet proteomics reveals mycobacterium tuberculosis induced alterations in macrophage response to infection. ACS Infect Dis 5:559–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Ferris P, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117

    CAS  PubMed  Google Scholar 

  • Missaglia S, Valadares ER, Moro L, Faguntes EDT, Quintão Roque R, Giardina B, Tavian D (2014) Early onset of Chanarin-Dorfman syndrome with severe liver involvement in a patient with a complex rearrangement of ABHD5 promoter. BMC Med Genet 15:32–32

    PubMed  PubMed Central  Google Scholar 

  • Miura S, Gan J-W, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR (2002) Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277:32253–32257

    CAS  PubMed  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

    CAS  PubMed  Google Scholar 

  • Moessinger C et al (2011) Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 286(24):21330–21339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore H-PH, Silver RB, Mottillo EP, Bernlohr DA, Granneman JG (2005) Perilipin targets a novel pool of lipid droplets for lipolytic attack by hormone-sensitive lipase. J Biol Chem 280:43109–43120

    CAS  PubMed  Google Scholar 

  • Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F (2019) The lipid metabolism in thraustochytrids. Prog Lipid Res 76:101007

    CAS  PubMed  Google Scholar 

  • Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282

    PubMed  Google Scholar 

  • Müller AO, Blersch KF, Gippert AL, Ischebeck T (2016) Tobacco pollen tubes – a fast and easy tool for studying lipid droplet association of plant proteins. Plant J 89:1055–1064

    Google Scholar 

  • Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–585

    CAS  PubMed  Google Scholar 

  • Na H, Zhang P, Chen Y, Zhu X, Liu Y, Liu Y, Xie K, Xu N, Yang F, Yu Y, Cichello S, Mak HY, Wang MC, Zhang H, Liu P (2015) Identification of lipid droplet structure-like/resident proteins in Caenorhabditis elegans. Biochim Biophys Acta 1853:2481–2491

    CAS  PubMed  Google Scholar 

  • Najt CP, Lwande JS, Mcintosh AL, Senthivinayagam S, Gupta S, Kuhn LA, Atshaves BP (2014) Structural and functional assessment of perilipin 2 lipid binding domain(s). Biochemistry 53:7051–7066

    CAS  PubMed  Google Scholar 

  • Nchoutmboube JA, Viktorova EG, Scott AJ, Ford LA, Pei Z, Watkins PA, Ernst RK, Belov GA (2013) Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles. PLoS Pathog 9:e1003401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HM, Baudet M, Cuiné S, Adriano J-M, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

    CAS  PubMed  Google Scholar 

  • Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, Inoue K, Kitazawa R, Kitazawa S, Matsuki Y, Hiramatsu R, Masubuchi S, Omachi A, Kimura K, Saito M, Amo T, Ohta S, Yamaguchi T, Osumi T, Cheng J, Fujimoto T, Nakao H, Nakao K, Aiba A, Okamura H, Fushiki T, Kasuga M (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118:2808–2821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nojima D, Yoshino T, Maeda Y, Tanaka M, Nemoto M, Tanaka T (2013) Proteomics analysis of oil body-associated proteins in the oleaginous diatom. J Proteome Res 12:5293–5301

    CAS  PubMed  Google Scholar 

  • Noothalapati Venkata HN, Shigeto S (2012) Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells. Chem Biol 19:1373–1380

    CAS  PubMed  Google Scholar 

  • Oh SK et al (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274(24):17132–17138

    CAS  PubMed  Google Scholar 

  • Okuda-Shimizu Y, Hendershot LM (2007) Characterization of an ERAD pathway for non-glycosylated BiP substrates which requires Herp. Mol Cell 28:544–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva J, French SW, Li J, Bardag-Gorce F (2012) Proteasome inhibitor treatment reduced fatty acid, triacylglycerol and cholesterol synthesis. Exp Mol Pathol 93:26–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olzmann JA, Kopito RR, Christianson JC (2013a) The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol:5, a013185. https://doi.org/10.1101/cshperspect.a013185

  • Olzmann JA, Richter CM, Kopito RR (2013b) Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc Natl Acad Sci USA 110:1345–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onal G, Kutlu O, Gozuacik D, Dokmeci Emre S (2017) Lipid droplets in health and disease. Lipids Health Dis 16:128

    PubMed  PubMed Central  Google Scholar 

  • Orban T, Palczewska G, Palczewski K (2011) Retinyl ester storage particles (Retinosomes) from the retinal pigmented epithelium resemble lipid droplets in other tissues. J Biol Chem 286(19):17248–17258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlicky DJ et al (2008) Multiple functions encoded by the N-terminal PAT domain of adipophilin. J Cell Sci 121(Pt 17):2921–2929

    CAS  PubMed  Google Scholar 

  • Paar M, Jüngst C, Steiner NA, Magnes C, Sinner F, Kolb D, Lass A, Zimmermann R, Zumbusch A, Kohlwein SD, Wolinski H (2012) Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 287:11164–11173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Gidda SK, James CN, Horn PJ, Khuu N, Seay DC, Keereetaweep J, Chapman KD, Mullen RT, Dyer JM (2013) The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis. Plant Cell 25:1726–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Keereetaweep J, James CN, Gidda SK, Chapman KD, Mullen RT, Dyer JM (2014) CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism. Plant Signal Behav 9:e27723

    PubMed  PubMed Central  Google Scholar 

  • Pasaribu B, Lin IP, Chen C-S, Lu C-Y, Jiang P-L (2014a) Nutrient limitation in Auxenochlorella protothecoides induces qualitative changes of fatty acid and expression of caleosin as a membrane protein associated with oil bodies. Biotechnol Lett 36:175–180

    CAS  PubMed  Google Scholar 

  • Pasaribu B, Lin IP, Tzen JTC, Jauh G-Y, Fan T-Y, Ju Y-M, Cheng J-O, Chen C-S, Jiang P-L (2014b) SLDP: a novel protein related to caleosin is associated with the endosymbiotic symbiodinium lipid droplets from Euphyllia glabrescens. Mar Biotechnol 16:560–571

    CAS  Google Scholar 

  • Pataki CI et al (2018) Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial α-helical membrane anchors. Proc Natl Acad Sci U S A 115(35):E8172–E8180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul A, Chan L, Bickel PE (2008) The PAT family of lipid droplet proteins in heart and vascular cells. Curr Hypertens Rep 10(6):461–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861

    CAS  PubMed  Google Scholar 

  • Peng S-E, Chen W-NU, Chen H-K, Lu C-Y, Mayfield AB, Fang L-S, Chen C-S (2011) Lipid bodies in coral–dinoflagellate endosymbiosis: proteomic and ultrastructural studies. Proteomics 11:3540–3555

    CAS  PubMed  Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding betaketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264(26):15293–15297

    CAS  PubMed  Google Scholar 

  • Pericleous M, Kelly C, Wang T, Livingstone C, Ala A (2017) Wolman’s disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol 2:670–679

    PubMed  Google Scholar 

  • Petroutsos D, Amiar S, Abida H, Dolch L-J, Bastien O, Rébeillé F, Jouhet J, Falconet D, Block MA, Mcfadden GI, Bowler C, Botté C, Maréchal E (2014) Evolution of galactoglycerolipid biosynthetic pathways – from cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 54:68–85

    CAS  PubMed  Google Scholar 

  • Pol A, Gross SP, Parton RG (2014) Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 204:635–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popluechai S, Froissard M, Jolivet P, Breviario D, Gatehouse AMR, O’donnell AG, Chardot T, Kohli A (2011) Jatropha curcas oil body proteome and oleosins: L-form JcOle3 as a potential phylogenetic marker. Plant Physiol Biochem 49:352–356

    CAS  PubMed  Google Scholar 

  • Pötter M, Steinbüchel A (2006) Biogenesis and structure of polyhydroxyalkanoate granules. In: Shively JM (ed) Inclusions in prokaryotes. Springer, Berlin, pp 109–136

    Google Scholar 

  • Poulsen LLC, Siersbæk M, Mandrup S (2012) PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 23:631–639

    PubMed  Google Scholar 

  • Qu R, Wang SM, Lin YH, Vance VB, Huang AH (1986) Characteristics and biosynthesis of membrane proteins of lipid bodies in the scutella of maize (Zea mays L.). Biochem J 235:57–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quettier A-L, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490

    CAS  PubMed  Google Scholar 

  • Quinn K, Purcell SM (2017) Lipodystrophies. StatPearls [Internet]

    Google Scholar 

  • Rabhi I et al (2012) Transcriptomic signature of leishmania infected mice macrophages: a metabolic point of view. PLoS Negl Trop Dis 6(8):e1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabhi S et al (2016) Lipid droplet formation, their localization and dynamics during leishmania major macrophage infection. PLoS One 11(2):e0148640

    PubMed  PubMed Central  Google Scholar 

  • Rajab A et al (2010) Fatal cardiac arrhythmia and Long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRFCAVIN mutations. PLoS Genet 6(3):e1000874

    PubMed  PubMed Central  Google Scholar 

  • Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663

    CAS  PubMed  Google Scholar 

  • Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108

    CAS  PubMed  Google Scholar 

  • Roingeard P, Melo RCN (2017) Lipid droplet hijacking by intracellular pathogens. Cell Microbiol 19:e12688

    Google Scholar 

  • Ruggiano A, Mora G, Buxó L, Carvalho P (2016) Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. EMBO J 35:1644–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rumin J, Bonnefond H, Saint-Jean B, Rouxel C, Sciandra A, Bernard O, Cadoret J-P, Bougaran G (2015) The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels 8:42

    PubMed  PubMed Central  Google Scholar 

  • Rydel TJ, Williams JM, Krieger E, Moshiri F, Stallings WC, Brown SM, Pershing JC, Purcell JP, Alibhai MF (2003) The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 42:6696–6708

    CAS  PubMed  Google Scholar 

  • Sahu-Osen A, Montero-Moran G, Schittmayer M, Fritz K, Dinh A, Chang Y-F, Mcmahon D, Boeszoermenyi A, Cornaciu I, Russell D, Oberer M, Carman GM, Birner-Gruenberger R, Brasaemle DL (2015) CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase a: control of subcellular localization. J Lipid Res 56:109–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saka HA, Thompson JW, Chen Y-S, Dubois LG, Haas JT, Moseley A, Valdivia RH (2015) Chlamydia trachomatis infection leads to defined alterations to the lipid droplet proteome in epithelial cells. PLoS One 10:e0124630

    PubMed  PubMed Central  Google Scholar 

  • Salo VT, Belevich I, Li S, Karhinen L, Vihinen H, Vigouroux C, Magré J, Thiele C, Hölttä-Vuori M, Jokitalo E, Ikonen E (2016) Seipin regulates ER–lipid droplet contacts and cargo delivery. EMBO J 35:2699–2716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuelov L et al (2011) An exceptional mutational event leading to Chanarin–Dorfman syndrome in a large consanguineous family. Br J Dermatol 164(6):1390–1392

    CAS  PubMed  Google Scholar 

  • Sando T, Hayashi T, Takeda T, Akiyama Y, Nakazawa Y, Fukusaki E, Kobayashi A (2009) Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. Planta 230:215–225

    CAS  PubMed  Google Scholar 

  • Sardet C (2013) In: Ulmer E (ed) Plancton - Aux origines du vivant, 218 p

    Google Scholar 

  • Sato S et al (2006) Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem 139(5):921–930

    CAS  PubMed  Google Scholar 

  • Schmuth M et al (2004) The effect of LXR activators on AP-1 proteins in keratinocytes. J Investig Dermatol 123(1):41–48

    CAS  PubMed  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–5847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweiger M, Paar M, Eder C, Brandis J, Moser E, Gorkiewicz G, Grond S, Radner FPW, Cerk I, Cornaciu I, Oberer M, Kersten S, Zechner R, Zimmermann R, Lass A (2012) G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase. J Lipid Res 53:2307–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK (2016) Role of ubiquitin-mediated degradation system in plant biology. Front Plant Sci 7:806

    PubMed  PubMed Central  Google Scholar 

  • Shen P, Zhao Q, Yao C, Wu S, Meng Y, Zhang L, Xue S (2016) Differential proteome analysis and identification of lipid droplet associated proteins in the marine microalgae Isochrysis zhangjiangensis (Haptophyta). In: The 4th Asia-Oceania algae innovation summit. Wuhan

    Google Scholar 

  • Shi Q (2019) Expression profiling of genes coding for abundant proteins in the alkenone body of marine haptophyte alga Tisochrysis lutea. BMC Microbiol 19:56–56

    PubMed  PubMed Central  Google Scholar 

  • Shi X, Li J, Zou X, Greggain J, Rødkær SV, Færgeman NJ, Liang B, Watts JL (2013) Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. J Lipid Res 54:2504–2514

    PubMed  PubMed Central  Google Scholar 

  • Shi Q, Araie H, Bakku RK, Fukao Y, Rakwal R, Suzuki I, Shiraiwa Y (2015) Proteomic analysis of lipid body from the alkenone-producing marine haptophyte alga Tisochrysis lutea. Proteomics 15:4145–4158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada TL, Hara-Nishimura I (2015) Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr Opin Plant Biol 25:145–150

    CAS  PubMed  Google Scholar 

  • Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K, Hara-Nishimura I (2014) Leaf oil body functions as a subcellular factory for the production of a Phytoalexin in Arabidopsis. Plant Physiol 164:105–118

    CAS  PubMed  Google Scholar 

  • Shimada TL, Takano Y, Hara-Nishimura I (2015) Oil body-mediated defense against fungi: from tissues to ecology. Plant Signal Behav 10:e989036

    PubMed  PubMed Central  Google Scholar 

  • Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I (2017) Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biol 17:98

    PubMed  PubMed Central  Google Scholar 

  • Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170(10):4431–4436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song P, Li L, Liu J (2013) Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation. PLoS One 8:e82188–e82188

    PubMed  PubMed Central  Google Scholar 

  • Soni KG, Mardones GA, Sougrat R, Smirnova E, Jackson CL, Bonifacino JS (2009) Coatomer-dependent protein delivery to lipid droplets. J Cell Sci 122:1834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soulages JL, Firdaus SJ, Hartson S, Chen X, Howard AD, Arrese EL (2012) Developmental changes in the protein composition of Manduca sexta lipid droplets. Insect Biochem Mol Biol 42:305–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza SC, De Vargas LM, Yamamoto MT, Lien P, Franciosa MD, Moss LG, Greenberg AS (1998) Overexpression of Perilipin A and B blocks the ability of tumor necrosis factor α to increase lipolysis in 3T3-L1 adipocytes. J Biol Chem 273:24665–24669

    CAS  PubMed  Google Scholar 

  • Stenson BM et al (2011) Liver X receptor (LXR) regulates human adipocyte lipolysis. J Biol Chem 286(1):370–379

    CAS  PubMed  Google Scholar 

  • Stevenson J, Huang EY, Olzmann JA (2016) Endoplasmic reticulum–associated degradation and lipid homeostasis. Annu Rev Nutr 36:511–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese RV (2009) The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 284:5352–5361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, Shapiro L, Dolios G, Wang R, Lisanti MP, Brasaemle DL (2004) Perilipin a mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem 279:42062–42071

    CAS  PubMed  Google Scholar 

  • Sun Z, Gong J, Wu H, Xu W, Wu L, Xu D, Gao J, Wu J-W, Yang H, Yang M, Li P (2013) Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4:1594

    PubMed  Google Scholar 

  • Suzuki M, Otsuka T, Ohsaki Y, Cheng J, Taniguchi T, Hashimoto H, Taniguchi H, Fujimoto T (2012) Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell 23:800–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sznajder A, Jendrossek D (2014) To be or not to be a poly(3-hydroxybutyrate) (PHB) depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, highly active PHB depolymerases with no detectable role in mobilization of accumulated PHB. Appl Environ Microbiol 80:4936–4946

    PubMed  PubMed Central  Google Scholar 

  • Talbott H, Davis JS (2017) Lipid droplets and metabolic pathways regulate steroidogenesis in the corpus luteum. In: Meidan R (ed) The life cycle of the corpus luteum. Springer International Publishing, Cham, pp 57–78

    Google Scholar 

  • Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, Reitman ML, Deng CX, Li C, Kimmel AR, Londos C (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci 98:6494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Targett-Adams P et al (2005) A PPAR response element regulates transcription of the gene for human adipose differentiation-related protein. Biochimica et Biophysica Acta (BBA) - Gene Struct Expr 1728(1):95–104

    CAS  Google Scholar 

  • Tariq A et al (2015) Is atomic rearrangement of type IV PHA synthases responsible for increased PHA production? J Biomol Struct Dyn 33(6):1225–1238

    CAS  PubMed  Google Scholar 

  • Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512

    CAS  PubMed  Google Scholar 

  • Taurino M, Costantini S, De Domenico S, Stefanelli F, Ruano G, Delgadillo MO, Sanchez-Serrano JJ, Sanmartín M, Santino A, Rojo E (2017) SEIPIN proteins mediate lipid droplet biogenesis to promote pollen transmission and reduce seed dormancy. Plant Physiol 176:1531–1546

    PubMed  PubMed Central  Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiam AR, Forêt L (2016) The physics of lipid droplet nucleation, growth and budding. Biochim Biophys Acta 1861:715–722

    CAS  PubMed  Google Scholar 

  • Thiam AR, Antonny B, Wang J, Delacotte J, Wilfling F, Walther TC, Beck R, Rothman JE, Pincet F (2013a) COPI buds 60-nm lipid droplets from reconstituted water–phospholipid–triacylglyceride interfaces, suggesting a tension clamp function. Proc Natl Acad Sci USA 110:13244–13249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiam AR, Farese RV Jr, Walther TC (2013b) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14:775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thul PJ, Tschapalda K, Kolkhof P, Thiam AR, Oberer M, Beller M (2017) Targeting of the Drosophila protein CG2254/Ldsdh1 to a subset of lipid droplets. J Cell Sci 130:3141

    CAS  PubMed  Google Scholar 

  • Tnani H, López I, Jouenne T, Vicient CM (2011) Protein composition analysis of oil bodies from maize embryos during germination. J Plant Physiol 168:510–513

    CAS  PubMed  Google Scholar 

  • Tobin KAR et al (2006) Regulation of ADRP expression by long-chain polyunsaturated fatty acids in BeWo cells, a human placental choriocarcinoma cell line. J Lipid Res 47(4):815–823

    CAS  PubMed  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci USA 110:19748–19753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turró S et al (2006) Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7(9):1254–1269

    PubMed  Google Scholar 

  • Uchino K, Saito T, Jendrossek D (2008) Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl Environ Microbiol 74:1058–1063

    CAS  PubMed  Google Scholar 

  • Van Wijk KJ, Kessler F (2017) Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu Rev Plant Biol 68:253–289

    PubMed  Google Scholar 

  • Vance VB, Huang AH (1987) The major protein from lipid bodies of maize. Characterization and structure based on cDNA cloning. J Biol Chem 262:11275–11279

    CAS  PubMed  Google Scholar 

  • Varela GM, Antwi DA, Dhir R, Yin X, Singhal NS, Graham MJ, Crooke RM, Ahima RS (2008) Inhibition of ADRP prevents diet-induced insulin resistance. Am J Physiol Gastrointest Liver Physiol 295:G621–G628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermachova M, Purkrtova Z, Santrucek J, Jolivet P, Chardot T, Kodicek M (2011) New protein isoforms identified within Arabidopsis thaliana seed oil bodies combining chymotrypsin/trypsin digestion and peptide fragmentation analysis. Proteomics 11:3430–3434

    CAS  PubMed  Google Scholar 

  • Venkata N, Hemanth N, Shigeto S (2012) Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells. Chem Biol 19(11):1373–1380

    Google Scholar 

  • Vieler A, Wu G, Tsai C-H, Bullard B, Cornish AJ, Harvey C, Reca I-B, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya, Simpson JP, Terbush A, Warakanont J, Zäuner S, Farre EM, Hegg EL, Jiang N, Kuo M-H, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu S-H, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viswanadha S, Londos C (2008) Determination of lipolysis in isolated primary adipocytes. In: Yang K (ed) Adipose tissue protocols. Humana Press, Totowa, pp 299–306

    Google Scholar 

  • Vrablik TL, Petyuk VA, Larson EM, Smith RD, Watts JL (2015) Lipidomic and proteomic analysis of C. elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. Biochim Biophys Acta 1851:1337–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    PubMed  PubMed Central  Google Scholar 

  • Waheed N et al (2016) Chanarin-Dorfman syndrome. J Coll Physicians Surg Pak 26(9):787–789

    PubMed  Google Scholar 

  • Walther TC, Chung J, Farese RV (2017) Lipid droplet biogenesis. Annu Rev Cell Dev Biol 33:491–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W et al (2015) Proteomic analysis of murine testes lipid droplets. Sci Rep 5:12070

    PubMed  PubMed Central  Google Scholar 

  • Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ, Graham MM, Liu XN, Thiam AR, Savage DB, Agarwal AK, Garg A, Olarte M-J, Lin Q, Fröhlich F, Hannibal-Bach HK, Upadhyayula S, Perrimon N, Kirchhausen T, Ejsing CS, Walther TC, Farese RV (2016) Seipin is required for converting nascent to mature lipid droplets. elife 5:e16582

    PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Sakiyama R, Iimi Y, Sekine S, Abe E, Nomura KH, Nomura K, Ishibashi Y, Okino N, Hayashi M, Ito M (2017) Regulation of TG accumulation and lipid droplet morphology by the novel TLDP1 in Aurantiochytrium limacinum F26-b. J Lipid Res 58:2334–2347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng J-X, Graham M, Christiano R, Fröhlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV, Walther TC (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24:384–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilfling F, Haas JT, Walther TC, Farese RV (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolman M, Sterk VV, Gatt S, Frenkel M (1961) Primary familial xanthomatosis with involvement and calcification of the adrenals. Report of two more cases in siblings of a previously described infant. Pediatrics 25:742–757

    Google Scholar 

  • Wu CC et al (2000) Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21(16):3470–3482

    CAS  PubMed  Google Scholar 

  • Xie M, Roy R (2015) The causative gene in Chanarian Dorfman syndrome regulates lipid droplet homeostasis in C. elegans. PLoS Genet 11:e1005284–e1005284

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T et al (2015) Characterization of lipid droplets in steroidogenic MLTC-1 Leydig cells: protein profiles and the morphological change induced by hormone stimulation. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids 1851(10):1285–1295

    CAS  Google Scholar 

  • Yang H-J, Hsu C-L, Yang J-Y, Yang WY (2012) Monodansylpentane as a blue-fluorescent lipid-droplet marker for multi-color live-cell imaging. PLoS One 7:e32693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yermanos DM (1975) Composition of jojoba seed during development. J Am Oil Chem Soc 52:115–117

    CAS  Google Scholar 

  • Yoneda K, Yoshida M, Suzuki I, Watanabe MM (2016) Identification of a major lipid droplet protein in a marine diatom Phaeodactylum tricornutum. Plant Cell Physiol 57:397–406

    CAS  PubMed  Google Scholar 

  • Yoneda K, Yoshida M, Suzuki I, Watanabe MM (2018) Homologous expression of lipid droplet protein-enhanced neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum. J Appl Phycol 30:2793–2802

    CAS  Google Scholar 

  • Youssef A, Laizet YH, Block MA, Maréchal E, Alcaraz J-P, Larson TR, Pontier D, Gaffé J, Kuntz M (2010) Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J 61:436–445

    CAS  PubMed  Google Scholar 

  • Yu J, Zhang S, Cui L, Wang W, Na H, Zhu X, Li L, Xu G, Yang F, Christian M, Liu P (2015) Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta 1853:918–928

    CAS  PubMed  Google Scholar 

  • Yu Y, Li T, Wu N, Jiang L, Ji X, Huang H (2017) The role of lipid droplets in Mortierella alpina aging revealed by integrative subcellular and whole-cell proteome analysis. Sci Rep 7:43896

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liu P (2017) The lipid droplet: a conserved cellular organelle. Protein Cell 8:796–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2011) Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein A-I. J Proteome Res 10(10):4757–4768

    CAS  PubMed  Google Scholar 

  • Zhang P, Na H, Liu Z, Zhang S, Xue P, Chen Y, Pu J, Peng G, Huang X, Yang F, Xie Z, Xu T, Xu P, Ou G, Zhang SO, Liu P (2012) Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteomics 11:317–328

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang Z, Chukkapalli V, Nchoutmboube JA, Li J, Randall G, Belov GA, Wang X (2016) Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites. Proc Natl Acad Sci USA 113:E1064–E1073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Yang L, Ding Y, Wang Y, Lan L, Ma Q, Chi X, Wei P, Zhao Y, Steinbüchel A, Zhang H, Liu P (2017) Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun 8:15979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Ding Y, Gong Z, Yang L, Zhang S, Zhang C, Lin X, Shen H, Zou H, Xie Z, Yang F, Zhao X, Liu P, Zhao ZK (2015) Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides. Eukaryot Cell 14:252–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by the French National Research Agency (ANR-10-LABEX-04 GRAL Labex, Grenoble Alliance for Integrated Structural Cell Biology; ANR-11-BTBR-0008 Océanomics; ANR-15-IDEX-02 GlycoAlps) and a Flagship program from the CEA High Commissioner.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josselin Lupette or Eric Maréchal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lupette, J., Maréchal, E. (2020). The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. In: Kloc, M. (eds) Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects. Results and Problems in Cell Differentiation, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-51849-3_11

Download citation

Publish with us

Policies and ethics