Skip to main content

On Linearizability Conditions for Non-autonomous Control Systems

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

Abstract

The paper deals with the problem of mappability of nonlinear non-autonomous control systems to linear non-autonomous systems with analytic matrices. We study the existence of non-local linearizing map of class \(C^2\) for nonlinear systems of class \(C^1\). In the paper K. Sklyar, On mappability of control systems to linear systems with analytic matrices. Systems Control Lett. 134 (2019), 104572, linearizability conditions were obtained under the additional requirement concerning existence of a non-local driftless form of the system. The goal of the present paper is to reduce this requirement.

The work was financially supported by Polish National Science Centre grant no. 2017/25/B/ST1/01892.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korobov, V.I.: Controllability, stability of some nonlinear systems. Differ. Uravnenija 9, 614–619 (1973). (in Russian)

    Google Scholar 

  2. Krener, A.: On the equivalence of control systems and the linearization of non-linear systems. SIAM J. Control 11, 670–676 (1973). https://doi.org/10.1137/0311051

    Article  MathSciNet  MATH  Google Scholar 

  3. Celikovsky, S.: Global linearization of nonlinear systems – a survey. In: Geom. in Nonlin. Control and Diff. Incl., Warszawa, pp. 123–137 (1995). https://doi.org/10.4064/-32-1-123-137

  4. Celikovsky, S., Nijmeijer, H.: Equivalence of nonlinear systems to triangular form: the singular case. Syst. Control Lett. 27, 135–144 (1996). https://doi.org/10.1016/0167-6911(95)00059-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Korobov, V.I., Pavlichkov, S.S.: Global properties of the triangular systems in the singular case. J. Math. Anal. Appl. 342, 1426–1439 (2008). https://doi.org/10.1016/j.jmaa.2007.12.070

    Article  MathSciNet  MATH  Google Scholar 

  6. Korobov, V.I., Sklyar, K.V., Skoryk, V.O.: Stepwise synthesis of constrained controls for single input nonlinear systems of special form. Nonlinear Differ. Equ. Appl. 23–31 (2016). https://doi.org/10.1007/s00030-016-0385-y

  7. Brockett, R.W.: Feedback invariance for nonlinear systems. In: Proceedings of the Seventh World Congress IFAC, Helsinki, pp. 1115–1120 (1978)

    Google Scholar 

  8. Jakubczyk, B., Respondek, W.: On linearization of control systems. Bull. Acad. Sci. Polonaise Ser. Sci. Math. 28, 517–522 (1980)

    Google Scholar 

  9. Su, R.: On the linear equivalents of nonlinear systems. Syst. Control Lett. 2, 48–52 (1982). https://doi.org/10.1016/S0167-6911(82)80042-X

    Article  MathSciNet  MATH  Google Scholar 

  10. Respondek, W.: Geometric methods in linearization of control systems. In: Mathematical Control Theory, vol. 14, pp. 453–467. Banach Center Publication, PWN, Warsaw (1985)

    Google Scholar 

  11. Respondek, W.: Linearization, feedback and Lie brackets. In: Scientific Papers of the Institute of Technical Cybernetics of the Technical University of Wroclaw, no. 70, Conf. 29, pp. 131–166 (1985)

    Google Scholar 

  12. Nicolau, F., Respondek, W.: Flatness of multi-input control-affine systems linearizable via one-fold prolongation. SIAM J. Control Optim. 55(5), 3171–3203 (2017). https://doi.org/10.1137/140999463

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, S., Moog, C.H., Respondek, W.: Maximal feedback linearization and its internal dynamics with applications to mechanical systems on \(\mathbb{R}^4\). Int. J. Robust Nonlinear Control 29(9), 2639–2659 (2019). https://doi.org/10.1002/rnc.4507

    Article  MathSciNet  MATH  Google Scholar 

  14. Sklyar, G.M., Sklyar, K.V., Ignatovich, S.Y.: On the extension of the Korobov’s class of linearizable triangular systems by nonlinear control systems of the class \(C^1\). Syst. Control Lett. 54, 1097–1108 (2005). https://doi.org/10.1016/j.sysconle.2005.04.002

    Article  MathSciNet  MATH  Google Scholar 

  15. Sklyar, K.V., Ignatovich, S.Y., Skoryk, V.O.: Conditions of linearizability for multi-control systems of the class \(C^1\). Commun. Math. Anal. 17, 359–365 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Sklyar, K.V., Ignatovich, S.Y.: Linearizability of systems of the class \(C^1\) with multi-dimensional control. Syst. Control Lett. 94, 92–96 (2016). https://doi.org/10.1016/j.sysconle.2016.05.016

    Article  MathSciNet  MATH  Google Scholar 

  17. Sklyar, K.V., Ignatovich, S.Y., Sklyar, G.M.: Verification of feedback linearizability conditions for control systems of the class \(C^1\). In: 25th Mediterranean Conference on Control and Automation, MED, pp. 163–168 (2017). 7984112

    Google Scholar 

  18. Sklyar, K.V., Sklyar, G.M., Ignatovich, S.Y.: Linearizability of multi-control systems of the class \(C^1\) by additive change of controls. In: André, C., Bastos, M., Karlovich, A., Silbermann, B., Zaballa, I. (eds.) Operator Theory, Operator Algebras, and Matrix Theory. Operator Theory: Advances and Applications, vol. 267, pp. 359–370. Birkhauser/Springer, Cham (2018)

    Chapter  Google Scholar 

  19. Sklyar, K.: On mappability of control systems to linear systems with analytic matrices. Syst. Control Lett. 134, 104572 (2019). https://doi.org/10.1016/j.sysconle.2019.104572

    Article  MathSciNet  MATH  Google Scholar 

  20. Arnol’d, V.I.: Ordinary Differential Equations. Springer-Verlag, Heidelberg (1992)

    MATH  Google Scholar 

  21. Hartman, P.: Ordinary Differential Equations, vol. XIV. Wiley, New York, London, Sydney (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Sklyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sklyar, K., Ignatovich, S. (2020). On Linearizability Conditions for Non-autonomous Control Systems. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_53

Download citation

Publish with us

Policies and ethics