Skip to main content

Beyond the Buzzwords: On the Perspective of AI in UX and Vice Versa

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2020)

Abstract

Integrating Artificial Intelligence (AI) technologies promises to open new possibilities for the development of smart systems and the creation of positive user experiences. While the acronym «AI»has often been used inflationary in recent marketese advertisements, the goal of the paper is to explore the relationship of AI and UX in concrete detail by referring to three case studies from our lab. The first case study is taken from a project targeted at the development of a clinical decision support system, while the second study focuses on the development of an autonomous mobility-on-demand system. The final project explores an innovative, AI-injected prototyping tool. We discuss challenges and the application of available guidelines when designing AI-based systems and provide insights into our learnings from the presented case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amershi, S., et al.: Guidelines for Human-AI interaction. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM Glasgow (2019)

    Google Scholar 

  2. Lighthill, J.: Artificial intelligence: a general survey. In: Artificial Intelligence: a Paper Symposium (1973)

    Google Scholar 

  3. Glenn, J.C., Millennium Project Team: Work/Technology 2050: Scenarios and Actions, technical report, The Millennium Project, Washington (2019)

    Google Scholar 

  4. Cramer, H., Kim, J.: Confronting the tensions where UX meets AI. Interactions 26(6), 69–71 (2019)

    Article  Google Scholar 

  5. Eden, G.: Transforming cars into computers: interdisciplinary opportunities for HCI. In: Proceedings of the 32nd International BCS Human Computer Interaction Conference (HCI 2018), no. July (2018)

    Google Scholar 

  6. Loi, D., Wolf, C.T., Blomberg, J.L., Arar, R., Brereton, M.: Co-designing AI futures: integrating AI ethics, social computing, and design. In: DIS 2019 Companion - Companion Publication of the 2019 ACM Designing Interactive Systems Conference, no. Ml, pp. 381–384 (2019)

    Google Scholar 

  7. Churchill, E.F., Van Allen, P., Kuniavsky, M.: Designing AI. Interactions 25(6), 35–37 (2018)

    Article  Google Scholar 

  8. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    MATH  Google Scholar 

  9. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  10. Vajapey, K.: What’s the Difference Between AI, ML, Deep Learning, and Active Learning? (2019)

    Google Scholar 

  11. DIN Deutsches Institut für Normung e, V.: Ergonomics of human-system interaction - Part 210: Human-centred design for interactive systems (ISO 9241–210:2010) English translation of DIN EN ISO 9241–210:2011–01 (2011)

    Google Scholar 

  12. Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Factors: J. Hum. Factors Ergon. Soc. 39(2), 230–253 (1997)

    Article  Google Scholar 

  13. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 30(3), 286–297 (2000)

    Article  Google Scholar 

  14. Flemisch, F., Kelsch, J., Löper, C., Schieben, A., Schindler, J.: Automation spectrum, inner/outer compatibility and other potentially useful human factors concepts for assistance and automation. Hum. Factors Assist. Autom. 2008, 1–16 (2008)

    Google Scholar 

  15. Bibby, K.S., Margulies, F., Rijnsdorp, J.E., Withers, R.M.J., Makarov, I.M.: Man’s role in control systems. In: 6th IFAC Congress Boston (1975)

    Google Scholar 

  16. Bainbridge, L.: Ironies of automation. Automatica 19(6), 775–779 (1983)

    Article  Google Scholar 

  17. Manzey, D.: Systemgestaltung und Automatisierung. In: Badke-Schaub, P., Hofinger, G., Lauche, K. (eds.) Human Factors, 2nd edn, pp. 333–352. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-19886-1_19. Chapter 19

    Chapter  Google Scholar 

  18. Kaur, K., Rampersad, G.: Trust in driverless cars: investigating key factors influencing the adoption of driverless cars. J. Eng. Technol. Manage. 48, 87–96 (2018)

    Article  Google Scholar 

  19. Lacher, A., Grabowski, R., Cook, S.: Autonomy, trust, and transportation. In: Proceedings of the 2014 AAAI Spring Symposium, pp. 42–49 (2014)

    Google Scholar 

  20. Wolf, I.: Wechselwirkung Mensch und autonomer agent. In: Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomes Fahren, pp. 103–125. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45854-9_6

    Chapter  Google Scholar 

  21. Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. factors 46(1), 50–80 (2004)

    Article  Google Scholar 

  22. Muir, B.M.: Trust in automation: Part I. theoretical issues in the study of trust and human intervention in automated systems. Ergonomics 37(11), 1905–1922 (1994)

    Article  Google Scholar 

  23. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)

    Article  Google Scholar 

  24. Carsten, O., Martens, M.H.: How can humans understand their automated cars? HMI principles, problems and solutions. Cognit. Technol. Work 21(1), 3–20 (2018). https://doi.org/10.1007/s10111-018-0484-0

    Article  Google Scholar 

  25. Bubb, H.: Das Regelkreisparadigma der Ergonomie. Automobilergonomie. A, pp. 27–65. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-8348-2297-0_2

    Chapter  Google Scholar 

  26. Endsley, M.R., Kiris, E.O.: The out-of-the-loop performance problem and level of control in automation. Hum. Factors: J. Hum. Factors Ergon. Soc. 37(2), 381–394 (1995)

    Article  Google Scholar 

  27. Wickens, C.D.: Designing for situation awareness and trust in automation. IFAC Proc. Vol. 28(23), 365–370 (1994)

    Article  Google Scholar 

  28. DIN Deutsches Institut für Normung e, V.: DIN EN ISO 9241–110:2008–09 Ergonomics Of Human-System Interaction - Part 110: Dialogue Principles (ISO 9241–110:2006) English Version Of DIN EN ISO 9241–110:2008–09 (2008)

    Google Scholar 

  29. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R. (eds.) Usability Inspection Methods, ch. 2, pp. 25–62. John Wiley, New York (1994)

    Google Scholar 

  30. Google: People + AI Guidebook: User Needs + Defining Success (2020)

    Google Scholar 

  31. Horvitz, E.: Proceedings of the SIGCHI conference on human factors in computing systems the CHI is the limit - CHI 1999, In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, no. May, pp. 159–166 (1999)

    Google Scholar 

  32. Alan, Y., Urbach, N., Hinsen, S., Jöhnk, J., Beisel, P., Weißert, M.: Think beyond tomorrow - KI, mein Freund und Helfer - Herausforderungen und Implikationen für die Mensch-KI-Interaktion, technical report, EY & Fraunhofer FIT, Bayreuth (2019)

    Google Scholar 

  33. Samek, W., Wiegand, T., Müller, K.-R.: Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models (2017)

    Google Scholar 

  34. McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Article  Google Scholar 

  35. Gulshan, V., et al.: Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India. JAMA Ophthalmol. 137(9), 987–993 (2019)

    Article  Google Scholar 

  36. Komorowski, M., Celi, L.A., Badawi, O., Gordon, A., Faisal, A.: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 24, 11 (2018)

    Article  Google Scholar 

  37. Krishnan, G.S., Sowmya Kamath, S.: A supervised learning approach for ICU mortality prediction based on unstructured electrocardiogram text reports. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB 2018. LNCS, vol. 10859, pp. 126–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91947-8_13

    Chapter  Google Scholar 

  38. Ettori, F., et al.: Impact of a computer-assisted decision support system (CDSS) on nutrition management in critically ill hematology patients: the nutchoco study (nutritional care in hematology oncologic patients and critical outcome). Ann. Intensive Care 9(1), 53 (2019)

    Article  Google Scholar 

  39. Tafelski, S., et al.: Supporting antibiotic therapy in German ICUS - analysis of user friendliness and satisfaction with a computer-assisted stewardship programme. Anasthesiologie und Intensivmedizin 57, 174–181 (2016)

    Google Scholar 

  40. Saeed, M., Lieu, C., Raber, G., Mark, R.G.: Mimic ii: a massive temporal ICU patient database to support research in intelligent patient monitoring. In: Computers in Cardiology, pp. 641–644, September 2002

    Google Scholar 

  41. Belard, A., et al.: Precision diagnosis: a view of the clinical decision support systems (CDSS) landscape through the lens of critical care. J. Clin. Monitor. Comput. 31, 02 (2016)

    Google Scholar 

  42. Yang, Q., Zimmerman, J., Steinfeld, A., Carey, L., Antaki, J.F.: Investigating the heart pump implant decision process: opportunities for decision support tools to help. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI 2016, New York, USA, pp. 4477–4488. ACM (2016)

    Google Scholar 

  43. McGinn, T.: Cds, UX, and system redesign - promising techniques and tools to bridge the evidence gap. In: EGEMS, Washington, DC, vol. 3, p. 1184, July 2015

    Google Scholar 

  44. Sittig, D.F., et al.: Grand challenges in clinical decision support. J. Biomed. Inform. 41, 387–392 (2008)

    Article  Google Scholar 

  45. Khairat, S., Marc, D., Crosby, W., Al Sanousi, A.: Reasons for physicians not adopting clinical decision support systems: critical analysis. JMIR Med. Inform. 6(2), e24 (2018)

    Article  Google Scholar 

  46. Horsky, J., Schiff, G.D., Johnston, D., Mercincavage, L., Bell, D., Middleton, B.: Interface design principles for usable decision support: a targeted review of best practices for clinical prescribing interventions. J. Biomed. Inform. 45(6), 1202–1216 (2012)

    Article  Google Scholar 

  47. Cai, C.J., Winter, S., Steiner, D., Wilcox, L. and Terry, M.: “Hello AI”: uncovering the onboarding needs of medical practitioners for human-AI collaborative decision-making. In: Proceedings of ACM Human-Computer Interaction, vol. 3, November 2019

    Google Scholar 

  48. Hassenzahl, M.: Experience design: technology for all the right reasons. Synth. Lect. Hum.-Centered Inform. 3(1), 01–95 (2010)

    Article  Google Scholar 

  49. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Morgan Kaufmann Publishers Inc., San Francisco (1997)

    Google Scholar 

  50. Kaltenhauser, A., Rheinstädter, V., Butz, A., Wallach, D.: “You Have to Piece the Puzzle Together” - Designing for Decision Support in Intensive Care. In: Proceedings of the Designing Interactive Systems Conference 2020 (DIS 2020). Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3357236.3395436

  51. Kalbach, J.: Mapping Experiences: A Complete Guide to Creating Value Through Journeys, Blueprints, and Diagrams, 1st edn. O’Reilly Media Inc., Newton (2016)

    Google Scholar 

  52. Séguin, J.A., Scharff, A., Pedersen, K.: Triptech: a method for evaluating early design concepts. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, CHI EA 2019. NY, USA. Association for Computing Machinery, New York (2019)

    Google Scholar 

  53. Hassenzahl, M., Diefenbach, S., Göritz, A.: Needs, affect, and interactive products-Facets of user experience. Interact. Comput. 22(5), 353–362 (2010)

    Article  Google Scholar 

  54. Pavone, M.: Autonomous mobility-on-demand systems for future urban mobility. In: Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomes Fahren, pp. 399–416. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45854-9_19

    Chapter  Google Scholar 

  55. SAE International: J3016-JUN2018 - Surface Vehicle Recommend Practice: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (2018)

    Google Scholar 

  56. Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M.: Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: a case study in Singapore. In: Meyer, G., Beiker, S. (eds.) Road Vehicle Automation. LNM, pp. 229–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05990-7_20

    Chapter  Google Scholar 

  57. Chong, Z.J., et al.: Autonomy for mobility on demand. In: Proceedings of the 12th International Conference on Intelligent Autonomous Systems (IAS 2013), vol. 293, pp. 671–682, Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33926-4_64

  58. Hinderer, H., Stegmuller, J., Schmidt, J., Sommer, J., Lucke, J.: Acceptance of autonomous vehicles in suburban public transport. In: Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC 2018) (2018)

    Google Scholar 

  59. Fraunhofer IAO and Horváth & Partners: The Value of Time - Nutzerbezogene Service-Potenziale durch autonomes Fahren, technical report, Stuttgart (2016)

    Google Scholar 

  60. APEROL i.V. PSI Logistics GmbH. www.autonomousshuttle.de - APEROL - Autonome personenbezogene Organisation des Straßenverkehrs und digitale Logistik (2019)

    Google Scholar 

  61. Bubb, H., Bengler, K., Breuninger, J., Gold, C., Helmbrecht, M.: Systemergonomie des Fahrzeugs. Automobilergonomie. A, pp. 259–344. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-8348-2297-0_6

    Chapter  Google Scholar 

  62. Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection: a review. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 694–711 (2006)

    Article  Google Scholar 

  63. Kooij, J.F., Flohr, F., Pool, E.A., Gavrila, D.M.: Context-based path prediction for targets with switching dynamics. Int. J. Comput. Vision 127(3), 239–262 (2019)

    Article  Google Scholar 

  64. Olden, J.D., Jackson, D.A.: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154(1–2), 135–150 (2002)

    Article  Google Scholar 

  65. Brell, T.: Aachener Bürgerdialog zum Thema autonome Mobilität (2019)

    Google Scholar 

  66. Brell, T., Philipsen, R., Ziefle, M.: Suspicious minds? - users’ perceptions of autonomous and connected driving. Theor. Issues Ergon. Sci. 20(3), 301–331 (2019)

    Article  Google Scholar 

  67. Uber: Uber’s Emergency Button (2019)

    Google Scholar 

  68. Beul-Leusmann, S., Jakobs, E.M., Ziefle, M.: User-centered design of passenger information systems. In: Proceedings of the IEEE International Professional Communication 2013 Conference (IPCC 2013) (2013)

    Google Scholar 

  69. Philipsen, R., Brell, T., Ziefle, M.: Carriage Without a driver – user requirements for intelligent autonomous mobility services. In: Stanton, N. (ed.) AHFE 2018. AISC, vol. 786, pp. 339–350. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93885-1_31

    Chapter  Google Scholar 

  70. Flohr, L.A., Janetzko, D., Wallach, D.P., Scholz, S.C., Krüger, A.: Context-Based Interface Prototyping and Evaluation for (Shared) Autonomous Vehicles Using a Lightweight Immersive Video-Based Simulator. In: Proceedings of the Designing Interactive Systems Conference 2020 (DIS 2020). Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3357236.3395468

  71. Wallach, D.P., Fackert, S., Albach, V.: Predictive prototyping for real-world applications: a model-based evaluation approach based on the ACT-R cognitive architecture. In: DIS 2019 - Proceedings of the 2019 ACM Designing Interactive Systems Conference, pp. 1495–1502 (2019)

    Google Scholar 

  72. Howes, A., Young, R.M.: The role of cognitive architecture in modeling the user: soar’s learning mechanism. Hum.-Comput. Interact. 12(4), 311–343 (1997)

    Article  Google Scholar 

  73. Ergosign GmbH: Antetype.com (2020)

    Google Scholar 

  74. Wallach, D., Scholz, S.: Thinking aloud: foundations, prospects and practical challenges. In: Klopp, J., Schneider, F., Stark, R. (eds.) Thinking Aloud - The Mind in Action. Weimar: Bertuch (2019)

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the German Federal Ministry of Education and Research (BMBF) under the grant numbers 13GW0280B and 02L15A212 as well as by the German Federal Ministry of Transport and Digital Infrastructure (BMVI) under the grant number 16AVF2134A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter P. Wallach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wallach, D.P., Flohr, L.A., Kaltenhauser, A. (2020). Beyond the Buzzwords: On the Perspective of AI in UX and Vice Versa. In: Degen, H., Reinerman-Jones, L. (eds) Artificial Intelligence in HCI. HCII 2020. Lecture Notes in Computer Science(), vol 12217. Springer, Cham. https://doi.org/10.1007/978-3-030-50334-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50334-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50333-8

  • Online ISBN: 978-3-030-50334-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics