Skip to main content

Parathyroid Gland and Musculoskeletal Signs

  • Chapter
  • First Online:
Endocrine Pathophysiology
  • 665 Accesses

Abstract

The discovery of the parathyroid glands was credited to a medical student who reported this “last anatomic discovery” in a paper published in 1880. The devastating effects of autonomous parathyroid hormone secretion such as osteoporosis, osteitis fibrosa cystica, and kidney injury are less common in modern times. Inactivating PTH/PTHrp signaling disorders (iPPSD) is a new umbrella term for endocrine conditions like pseudopseudohypoparathyroidism and pseudohypoparathyroidism. The genetic basis for the clinical manifestations of these disorders will be explored in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abboud B, Daher R, Boujaoude J. Digestive manifestations of parathyroid disorders. World J Gastroenterol. 2011;17:4063–6.

    PubMed  PubMed Central  Google Scholar 

  2. Jacob JJ, John M, Thomas N, Chacko A, Cherian R, Selvan B, Nair A, Seshadri MS. Does hyperparathyroidism cause pancreatitis? A south Indian experience and a review of published work. ANZ J Surg. 2006;76:740–4.

    PubMed  Google Scholar 

  3. Ozaki A, Tanimoto T, Yamagishi E, et al. Finger fractures as an early manifestation of primary hyperparathyroidism among young patients: a case report of a 30-year-old male with recurrent osteoporotic fractures. Medicine (Baltimore). 2016;95:e3683.

    PubMed  PubMed Central  Google Scholar 

  4. Bilezikian JP. Primary hyperparathyroidism. J Clin Endocrinol Metabol. 2018;103:3993–4004.

    Google Scholar 

  5. Zhang S, Wang X, Li G, Chong Y, Zhang J, Guo X, Li B, Bi Z. Osteoclast regulation of osteoblasts via RANK-RANKL reverse signal transduction in vitro. Mol Med Rep. 2017;16:3994–4000.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jilka RL, O’Brien CA, Bartell SM, Weinstein RS, Manolagas SC. Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J Bone Miner Res. 2010;25:2427–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells. 2017;40:706–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharma S, Kumar S. Bilateral genu valgum: an unusual presentation of juvenile primary hyperparathyroidism. Oxf Med Case Reports. 2016;2016:141–3.

    PubMed  PubMed Central  Google Scholar 

  9. Lachungpa T, Sarawagi R, Chakkalakkoombil SV, Jayamohan AE. Imaging features of primary hyperparathyroidism. BMJ Case Rep. 2014;2014:bcr2013203521. https://doi.org/10.1136/bcr-2013-203521.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Erdel BL, Juneja R, Evans-Molina C. A case of calciphylaxis in a patient with hypoparathyroidism and normal renal function. Endocr Pract. 2014;20:e102–5.

    PubMed  PubMed Central  Google Scholar 

  11. Ikeda K, Takeshita S. The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem. 2016;159:1–8.

    CAS  PubMed  Google Scholar 

  12. Kobayashi W, Yokokura S, Hariya T, Nakazawa T. Two percent ethylenediaminetetraacetic acid chelation treatment for band-shaped keratopathy, without blunt scratching after removal of the corneal epithelium. Clin Ophthalmol. 2015;9:217–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weng S-F, Jan R-L, Chang C, Wang J-J, Su S-B, Huang C-C, Tseng S-H, Chang Y-S. Risk of band keratopathy in patients with end-stage renal disease. Sci Rep. 2016;6:28675.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Carrelli AL, Silverberg SJ. Primary hyperparathyroidism and hypertension. In: Koch CA, Chrousos GP, editors. Endocrine hypertension: underlying mechanisms and therapy. Totowa: Humana Press; 2013. p. 181–94.

    Google Scholar 

  15. Brown SJ, Ruppe MD, Tabatabai LS. The parathyroid gland and heart disease. Methodist Debakey Cardiovasc J. 2017;13:49–54.

    PubMed  PubMed Central  Google Scholar 

  16. Yao L, Folsom AR, Pankow JS, Selvin E, Michos ED, Alonso A, Tang W, Lutsey PL. Parathyroid hormone and the risk of incident hypertension: the Atherosclerosis Risk in Communities study. J Hypertens. 2016;34:196–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown J, de Boer IH, Robinson-Cohen C, Siscovick DS, Kestenbaum B, Allison M, Vaidya A. Aldosterone, parathyroid hormone, and the use of renin-angiotensin-aldosterone system inhibitors: the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2015;100:490–9.

    CAS  PubMed  Google Scholar 

  18. Schlüter KD, Piper HM. Cardiovascular actions of parathyroid hormone and parathyroid hormone-related peptide. Cardiovasc Res. 1998;37:34–41.

    PubMed  Google Scholar 

  19. Chen RA, Goodman WG. Role of the calcium-sensing receptor in parathyroid gland physiology. Am J Physiol Renal Physiol. 2004;286:F1005–11.

    CAS  PubMed  Google Scholar 

  20. Conigrave AD. The calcium-sensing receptor and the parathyroid: past, present. Future Front Physiol. 2016;7:563. https://doi.org/10.3389/fphys.2016.00563.

    Article  PubMed  Google Scholar 

  21. Riccardi D, Brown EM. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol. 2010;298:F485–99.

    CAS  PubMed  Google Scholar 

  22. Papadopoulou A, Gole E, Melachroinou K, Meristoudis C, Siahanidou T, Papadimitriou A. Identification and functional characterization of a calcium-sensing receptor mutation in an infant with familial Hypocalciuric Hypercalcemia. J Clin Res Pediatr Endocrinol. 2016;8:341–6.

    PubMed  PubMed Central  Google Scholar 

  23. Roszko KL, Bi RD, Mannstadt M. Autosomal dominant hypocalcemia (Hypoparathyroidism) types 1 and 2. Front Physiol. 2016;7:458. https://doi.org/10.3389/fphys.2016.00458.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim MY, Tan AHK, Ki C-S, et al. Autosomal dominant hypocalcemia caused by an activating mutation of the calcium-sensing receptor gene: the first case report in Korea. J Korean Med Sci. 2010;25:317–20.

    PubMed  PubMed Central  Google Scholar 

  25. Yamamoto M, Akatsu T, Nagase T, Ogata E. Comparison of hypocalcemic hypercalciuria between patients with idiopathic hypoparathyroidism and those with gain-of-function mutations in the calcium-sensing receptor: is it possible to differentiate the two disorders? J Clin Endocrinol Metab. 2000;85:4583–91.

    CAS  PubMed  Google Scholar 

  26. Silverberg SJ, Bilezikian JP. Evaluation and management of primary hyperparathyroidism. J Clin Endocrinol Metab. 1996;81:2036–40.

    CAS  PubMed  Google Scholar 

  27. Misiorowski W, Czajka-Oraniec I, Kochman M, Zgliczyński W, Bilezikian JP. Osteitis fibrosa cystica-a forgotten radiological feature of primary hyperparathyroidism. Endocrine. 2017;58:380–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maina AM, Kraus H. Successful treatment of osteitis fibrosa cystica from primary hyperparathyroidism. Case Rep Orthop. 2012;2012:3. https://doi.org/10.1155/2012/145760.

    Article  Google Scholar 

  29. Jervis L, James M, Howe W, Richards S. Osteolytic lesions: osteitis fibrosa cystica in the setting of severe primary hyperparathyroidism. BMJ Case Rep. 2017;2017:bcr-2017. https://doi.org/10.1136/bcr-2017-220603.

    Article  Google Scholar 

  30. Mellouli N, Belkacem Chebil R, Darej M, Hasni Y, Oualha L, Douki N. Mandibular osteitis fibrosa cystica as first sign of vitamin D deficiency. Case Rep Dent. 2018;2018:5. https://doi.org/10.1155/2018/6814803.

    Article  Google Scholar 

  31. Bilezikian JP, Brandi ML, Eastell R, Silverberg SJ, Udelsman R, Marcocci C, Potts JT. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop. J Clin Endocrinol Metab. 2014;99:3561–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Carroll R, Matfin G. Endocrine and metabolic emergencies: hypercalcaemia. Ther Adv Endocrinol Metab. 2010;1:225–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mirrakhimov AE. Hypercalcemia of malignancy: an update on pathogenesis and management. N Am J Med Sci. 2015;7:483–93.

    PubMed  PubMed Central  Google Scholar 

  34. Vyas AK, White NH. Case of hypercalcemia secondary to hypervitaminosis a in a 6-year-old boy with autism. Case Rep Endocrinol. 2011;2011:424712. https://doi.org/10.1155/2011/424712.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sharma OP. Hypercalcemia in granulomatous disorders: a clinical review. Curr Opin Pulm Med. 2000;6:442–7.

    CAS  PubMed  Google Scholar 

  36. Burke RR, Rybicki BA, Rao DS. Calcium and vitamin D in sarcoidosis: how to assess and manage. Semin Respir Crit Care Med. 2010;31:474–84.

    PubMed  PubMed Central  Google Scholar 

  37. Yedla N, Perez E, Lagari V, Ayala A. Silicone granulomatous inflammation resulting in hypercalcemia: a review of the literature. AACE Clin Case Rep. 2018;5:e119–23.

    PubMed  PubMed Central  Google Scholar 

  38. Negri AL, Rosa Diez G, Del Valle E, Piulats E, Greloni G, Quevedo A, Varela F, Diehl M, Bevione P. Hypercalcemia secondary to granulomatous disease caused by the injection of methacrylate: a case series. Clin Cases Miner Bone Metab. 2014;11:44–8.

    PubMed  PubMed Central  Google Scholar 

  39. Sindhar S, Lugo M, Levin MD, et al. Hypercalcemia in patients with Williams-Beuren syndrome. J Pediatr. 2016;178:254–60.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schlingmann KP, Kaufmann M, Weber S, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011;365:410–21.

    CAS  PubMed  Google Scholar 

  41. Schlingmann KP, Ruminska J, Kaufmann M, et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile Hypercalcemia. J Am Soc Nephrol. 2016;27:604–14.

    CAS  PubMed  Google Scholar 

  42. Jesus JE, Landry A. Images in clinical medicine. Chvostek’s and Trousseau’s signs. N Engl J Med. 2012;367:e15.

    PubMed  Google Scholar 

  43. Marcucci G, Cianferotti L, Brandi ML. Clinical presentation and management of hypoparathyroidism. Best Pract Res Clin Endocrinol Metab. 2018;32(6):927–39. https://doi.org/10.1016/j.beem.2018.09.007.

    Article  CAS  PubMed  Google Scholar 

  44. Chhabra P, Rana SS, Sharma V, Sharma R, Bhasin DK. Hypocalcemic tetany: a simple bedside marker of poor outcome in acute pancreatitis. Ann Gastroenterol. 2016;29:214–20.

    PubMed  PubMed Central  Google Scholar 

  45. Cooper MS, Gittoes NJL. Diagnosis and management of hypocalcaemia. BMJ. 2008;336:1298–302.

    PubMed  PubMed Central  Google Scholar 

  46. Hujoel IA. The association between serum calcium levels and Chvostek sign. Neurol Clin Pract. 2016;6:321–8.

    PubMed  PubMed Central  Google Scholar 

  47. Han P, Trinidad BJ, Shi J. Hypocalcemia-induced seizure. ASN Neuro. 2015;7(2) https://doi.org/10.1177/1759091415578050.

  48. Chaimovitz C, Abinader E, Benderly A, Better OS. Hypocalcemic hypotension. JAMA. 1972;222:86–7.

    CAS  PubMed  Google Scholar 

  49. Thurlow JS, Yuan CM. Dialysate-induced hypocalcemia presenting as acute intradialytic hypotension: a case report, safety review, and recommendations. Hemodial Int. 2016;20:E8–E11.

    PubMed  Google Scholar 

  50. Ghent S, Judson MA, Rosansky SJ. Refractory hypotension associated with hypocalcemia and renal disease. Am J Kidney Dis. 1994;23:430–2.

    CAS  PubMed  Google Scholar 

  51. Wong CK, Lau CP, Cheng CH, Leung WH, Freedman B. Hypocalcemic myocardial dysfunction: short- and long-term improvement with calcium replacement. Am Heart J. 1990;120:381–6.

    CAS  PubMed  Google Scholar 

  52. Gradisnik P. Hypoparathyroidism should always be checked in papilledema. J Neurosci Rural Pract. 2017;8:329.

    PubMed  PubMed Central  Google Scholar 

  53. Goyal JL, Kang J, Gupta R, Anand A, Arora R, Jain P. Bilateral papilledema in hypocalcemia. Sci J. 2012;23:127–30.

    Google Scholar 

  54. Mitchell DM, Regan S, Cooley MR, Lauter KB, Vrla MC, Becker CB, Burnett-Bowie S-AM, Mannstadt M. Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab. 2012;97:4507–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shoback D. Hypoparathyroidism. N Engl J Med. 2008;359:391–403.

    CAS  PubMed  Google Scholar 

  56. Mendes EM, Meireles-Brandão L, Meira C, Morais N, Ribeiro C, Guerra D. Primary hypoparathyroidism presenting as basal ganglia calcification secondary to extreme hypocalcemia. Clin Pract. 2018;8(1):1007. https://doi.org/10.4081/cp.2018.1007.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Popp T, Steinritz D, Breit A, Deppe J, Egea V, Schmidt A, Gudermann T, Weber C, Ries C. Wnt5a/β-catenin signaling drives calcium-induced differentiation of human primary keratinocytes. J Invest Dermatol. 2014;134:2183–91.

    CAS  PubMed  Google Scholar 

  58. Guerreiro de Moura CAG, de Assis LH, Góes P, Rosa F, Nunes V, Gusmão ÍM, Cruz CMS. A case of acute generalized pustular psoriasis of von Zumbusch triggered by hypocalcemia. Case Rep Dermatol. 2015;7:345–51.

    PubMed  PubMed Central  Google Scholar 

  59. Knuever J, Tantcheva-Poor I. Generalized pustular psoriasis: a possible association with severe hypocalcaemia due to primary hypoparathyroidism. J Dermatol. 2017;44:1416–7.

    PubMed  Google Scholar 

  60. Stewart AF, Battaglini-Sabetta J, Millstone L. Hypocalcemia-induced pustular psoriasis of von Zumbusch. New experience with an old syndrome. Ann Intern Med. 1984;100:677–80.

    CAS  PubMed  Google Scholar 

  61. Kitamura K, Kanasashi M, Suga C, Saito S, Yoshida S, Ikezawa Z. Cutaneous reactions induced by calcium channel blocker: high frequency of psoriasiform eruptions. J Dermatol. 1993;20:279–86.

    CAS  PubMed  Google Scholar 

  62. Mantovani G, Bastepe M, Monk D, et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol. 2018;14:476–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hanna P, Grybek V, de Nanclares GP, et al. Genetic and epigenetic defects at the GNAS locus Lead to distinct patterns of skeletal growth but similar early-onset obesity. J Bone Miner Res. 2018;33:1480–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Linglart A, Levine MA, Jüppner H. Pseudohypoparathyroidism. Endocrinol Metab Clin N Am. 2018;47:865–88.

    Google Scholar 

  65. Long DN, McGuire S, Levine MA, Weinstein LS, Germain-Lee EL. Body mass index differences in pseudohypoparathyroidism type 1a versus pseudopseudohypoparathyroidism may implicate paternal imprinting of Gαs in the development of human obesity. J Clin Endocrinol Metab. 2007;92:1073–9.

    CAS  PubMed  Google Scholar 

  66. Carel JC, Le Stunff C, Condamine L, Mallet E, Chaussain JL, Adnot P, Garabédian M, Bougnères P. Resistance to the Lipolytic action of epinephrine: a new feature of protein Gs deficiency. J Clin Endocrinol Metab. 1999;84:4127–31.

    CAS  PubMed  Google Scholar 

  67. Linglart A, Fryssira H, Hiort O, et al. PRKAR1A and PDE4D mutations cause acrodysostosis but two distinct syndromes with or without GPCR-signaling hormone resistance. J Clin Endocrinol Metab. 2012;97:E2328–38.

    CAS  PubMed  Google Scholar 

  68. Reis MTA, Matias DT, de Faria MEJ, Martin RM. Failure of tooth eruption and brachydactyly in pseudohypoparathyroidism are not related to plasma parathyroid hormone-related protein levels. Bone. 2016;85:138–41.

    CAS  PubMed  Google Scholar 

  69. Turan S. Current nomenclature of pseudohypoparathyroidism: inactivating parathyroid hormone/parathyroid hormone-related protein signaling disorder. J Clin Res Pediatr Endocrinol. 2017;9:58–68.

    PubMed  PubMed Central  Google Scholar 

  70. Turan S, Bastepe M. GNAS spectrum of disorders. Curr Osteoporos Rep. 2015;13:146–58.

    PubMed  PubMed Central  Google Scholar 

  71. Thiele S, Mantovani G, Barlier A, et al. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol. 2016;175:P1–P17.

    CAS  PubMed  Google Scholar 

  72. Mantovani G, Elli FM. Inactivating PTH/PTHrP signaling disorders. Parathyroid Disord. 2019;51:147–59.

    CAS  Google Scholar 

  73. Dixit A, Chandler KE, Lever M, Poole RL, Bullman H, Mughal MZ, Steggall M, Suri M. Pseudohypoparathyroidism type 1b due to paternal uniparental disomy of chromosome 20q. J Clin Endocrinol Metab. 2013;98:E103–8.

    CAS  PubMed  Google Scholar 

  74. Elli FM, deSanctis L, Ceoloni B, Barbieri AM, Bordogna P, Beck-Peccoz P, Spada A, Mantovani G. Pseudohypoparathyroidism type Ia and pseudo-pseudohypoparathyroidism: the growing spectrum of GNAS inactivating mutations. Hum Mutat. 2013;34:411–6.

    CAS  PubMed  Google Scholar 

  75. Simpson C, Grove E, Houston BA. Pseudopseudohypoparathyroidism. Lancet. 2015;385:1123.

    PubMed  Google Scholar 

  76. Mantovani G. Pseudohypoparathyroidism: diagnosis and treatment. J Clin Endocrinol Metab. 2011;96:3020–30.

    CAS  PubMed  Google Scholar 

  77. Paul Tuck S, Layfield R, Walker J, Mekkayil B, Francis R. Adult Paget’s disease of bone: a review. Rheumatology (Oxford). 2017;56:2050–9.

    Google Scholar 

  78. Kang H, Park Y-C, Yang KH. Paget’s disease: skeletal manifestations and effect of bisphosphonates. J Bone Metab. 2017;24:97–103.

    PubMed  PubMed Central  Google Scholar 

  79. Shaker JL. Paget’s disease of bone: a review of epidemiology, pathophysiology and management. Ther Adv Musculoskelet Dis. 2009;1:107–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Whyte MP. Paget’s disease of bone. N Engl J Med. 2006;355:593–600.

    CAS  PubMed  Google Scholar 

  81. Falchetti A, Masi L, Brandi ML. Paget’s disease of bone: there’s more than the affected skeletal–a clinical review and suggestions for the clinical practice. Curr Opin Rheumatol. 2010;22:410–23.

    PubMed  Google Scholar 

  82. Singer FR, Bone HG, Hosking DJ, Lyles KW, Murad MH, Reid IR, Siris ES. Paget’s disease of bone: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:4408–22.

    CAS  PubMed  Google Scholar 

  83. Palleschi L, Nunziata E. Severe congestive heart failure in elderly patient with Paget’s disease. Geriatric Care. 2017;3(1) https://doi.org/10.4081/gc.2017.6727.

  84. Monsell EM. The mechanism of hearing loss in Paget’s disease of bone. Laryngoscope. 2004;114:598–606.

    PubMed  PubMed Central  Google Scholar 

  85. Rasgon B, Schloegel LJ. Early and accurate diagnosis of sudden sensorineural hearing loss. Perm J. 2009;13:61–3.

    PubMed  PubMed Central  Google Scholar 

  86. Kelly EA, Li B, Adams ME. Diagnostic accuracy of tuning fork tests for hearing loss: a systematic review. Otolaryngol Head Neck Surg. 2018;159:220–30.

    PubMed  Google Scholar 

  87. Oiseth SJ. Beethoven’s autopsy revisited: a pathologist sounds a final note. J Med Biogr. 2017;25:139–47.

    PubMed  Google Scholar 

  88. Alonso N, Calero-Paniagua I, del Pino-Montes J. Clinical and genetic advances in Paget’s disease of bone: a review. Clinic Rev Bone Miner Metab. 2017;15:37–48.

    CAS  Google Scholar 

  89. Albright F, Butler AM, Bloomberg E. Rickets resistant to vitamin D therapy. Am J Dis Child. 1937;54:529–47.

    Google Scholar 

  90. Choudhury S, Jebasingh KF, Ranabir S, Singh TP. Familial vitamin D resistant rickets: end-organ resistance to 1,25-dihydroxyvitamin D. Indian J Endocrinol Metab. 2013;17:S224–7.

    PubMed  PubMed Central  Google Scholar 

  91. Malloy PJ, Feldman D. Genetic disorders and defects in vitamin d action. Endocrinol Metab Clin North Am. 2010;39:333–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pettifor JM. Rickets and vitamin D deficiency in children and adolescents. Endocrinol Metab Clin N Am. 2005;34:537–53, vii.

    CAS  Google Scholar 

  93. Wharton B, Bishop N. Rickets. Lancet. 2003;362:1389–400.

    CAS  PubMed  Google Scholar 

  94. Sahay M, Sahay R. Rickets–vitamin D deficiency and dependency. Indian J Endocrinol Metab. 2012;16:164–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Malloy PJ, Zhou Y, Wang J, Hiort O, Feldman D. Hereditary vitamin D-resistant rickets (HVDRR) owing to a heterozygous mutation in the vitamin D receptor. J Bone Miner Res. 2011;26:2710–8.

    CAS  PubMed  Google Scholar 

  96. Zalewski A, Ma NS, Legeza B, Renthal N, Flück CE, Pandey AV. Vitamin D-dependent rickets type 1 caused by mutations in CYP27B1 affecting protein interactions with adrenodoxin. J Clin Endocrinol Metab. 2016;101:3409–18.

    CAS  PubMed  Google Scholar 

  97. Goltzman D, Mannstadt M, Marcocci C. Physiology of the calcium-parathyroid hormone-vitamin D axis. Front Horm Res. 2018;50:1–13.

    PubMed  Google Scholar 

  98. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96:365–408.

    CAS  PubMed  Google Scholar 

  99. Erben RG. Physiological actions of fibroblast growth factor-23. Front Endocrinol. 2018;9:267. https://doi.org/10.3389/fendo.2018.00267.

    Article  Google Scholar 

  100. Fukumoto S. Targeting fibroblast growth factor 23 signaling with antibodies and inhibitors, is there a rationale? Front Endocrinol (Lausanne). 2018;9:48.

    Google Scholar 

  101. Santos F, Fuente R, Mejia N, Mantecon L, Gil-Peña H, Ordoñez FA. Hypophosphatemia and growth. Pediatr Nephrol. 2013;28:595–603.

    PubMed  Google Scholar 

  102. Meyerhoff N, Haffner D, Staude H, et al. Effects of growth hormone treatment on adult height in severely short children with X-linked hypophosphatemic rickets. Pediatr Nephrol. 2018;33:447–56.

    PubMed  Google Scholar 

  103. Zivičnjak M, Schnabel D, Billing H, et al. Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol. 2011;26:223–31.

    PubMed  Google Scholar 

  104. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26:1381–8.

    PubMed  PubMed Central  Google Scholar 

  105. Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab. 2012;30:1–9.

    CAS  PubMed  Google Scholar 

  106. Prié D, Friedlander G. Genetic disorders of renal phosphate transport. N Engl J Med. 2010;362:2399–409.

    PubMed  Google Scholar 

  107. Reilly RF. Tumor-induced osteomalacia. J Onconephrol. 2018;2(2–3):92–101.

    Google Scholar 

  108. Lyseng-Williamson KA. Burosumab in X-linked hypophosphatemia: a profile of its use in the USA. Drugs Ther Perspect. 2018;34:497–506.

    PubMed  PubMed Central  Google Scholar 

  109. Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer. 2011;18:R53–77.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Manni .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manni, A., Quarde, A. (2020). Parathyroid Gland and Musculoskeletal Signs. In: Endocrine Pathophysiology. Springer, Cham. https://doi.org/10.1007/978-3-030-49872-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49872-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49871-9

  • Online ISBN: 978-3-030-49872-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics