Skip to main content

The Role of Ventilation in Fires and Explosions

  • Chapter
  • First Online:
Mine Ventilation
  • 571 Accesses

Abstract

Mine fires and explosions can take place in both working and inactive mines. The latter case relates mostly to spontaneous self-ignition of coal seams, which proves impossible to extinguish and may remain active for decades. Coal-seam fires are a global problem because of the release of tonnes of CO, CO2, CH4, NOx, SOx, Hg and ashes with harmful effects on both soil and water quality. They are so extensive that an estimated 2–3% of global CO2 emissions from fossil fuels come from unextinguished fires in coal mines (Zhang et al. 2004a; Kuenzer et al. 2007). In addition to the above effects, if fires arise in coal seams of any great thickness, subsidence phenomena may occur, with unfortunate consequences for surface structures above them. According to the Office of Surface Mining Reclamation and Enforcement (OSMRE), in the U.S.A., an estimated 98 coal-seam fires are currently active. This chapter will focus on the role that mine ventilation can play in controlling and extinguishing active mine fires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Flammable materials refers to those combustible materials that can be easily ignited at room temperatures.

  2. 2.

    In modern mines, both the conveyor belts and their coatings are made of fire-resistant materials.

  3. 3.

    The draught (American English: draft) is the flow rate induced by the (chimney) stack effect.

  4. 4.

    The approximation is based on Charles’ law: “At constant pressure, the volume V of a gas is directly proportional to its absolute temperature T”. Therefore, the densities can be considered inversely proportional to the absolute temperatures.

  5. 5.

    The temperature in the fire zone is taken to be approximately 1073 K.

  6. 6.

    Normally, the direction of evacuation opposes that of the fresh airflow.

  7. 7.

    Ratio of uphill height to horizontal length (slope).

  8. 8.

    Note that, as stated in the document itself: “This annex is not part of the requirements of this NFPA document and is included only for information purposes”.

  9. 9.

    NH3 in the presence of air at 16–27%v can form explosive mixtures, but as this is a very high concentration it is generally considered to be non-explosive (Geadah 1985).

  10. 10.

    Note that in the gas data the sum is 100%, without any account being taken of the concentration of argon, probably because of difficulties in obtaining a detector for this gas.

References

  • Abbasi, T., & Abbasi, S. A. (2007). Dust explosions–Cases, causes, consequences, and control. Journal of Hazardous Materials, 140(1–2), 7–44.

    Article  CAS  Google Scholar 

  • Budryk, W. (1956). Pozary i wybuchy w kopalniach, pp. 78–79, Katovice.

    Google Scholar 

  • Geadah, M. (1985). National inventory of natural and anthropogenic sources and emissions of ammonia (1980). Environmental Protection Programs Directorate, Environmental Protection Service, Environment Canada Report EPS5/IC/1.

    Google Scholar 

  • Graham, J. I. (1920). The normal production of carbon monoxide in coal mines. Transaction Institution of Mining Engineers, 60, 222–234.

    Google Scholar 

  • Hansen, R. (2010). Overview of fire and smoke spread in underground mines. In Fourth International Symposium on Tunnel Safety and Security (pp. 483–494). SP Fire Technology.

    Google Scholar 

  • Heiss, F., & Herbst, F. (1945). Incendios, aparatos para la respiración y salvamento (Chap. 10). In Tratado de laboreo de minas. Madrid: Labor.

    Google Scholar 

  • Jones, J. H., & Trickett, J. C. (1954). Some observations on the examination of gases resulting from explosions in collieries. Mining Engineering 114.

    Google Scholar 

  • Kennedy, W. D. (1996). Critical velocity: past, present and future, One Day seminar on smoke and critical velocity in tunnels. ITC.

    Google Scholar 

  • Kuenzer, C., Zhang, J., Tetzlaff, A., Van Dijk, P., Voigt, S., Mehl, H., et al. (2007). Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Applied Geography, 27(1), 42–62.

    Article  Google Scholar 

  • Laboratorio Oficial Madariaga (LOM). (2013). Técnicas de control y extinción de incendios en las obras subterráneas en la que se emplea técnica minera en su ejecución. Madrid: Ministerio de Industria Comercio y Turismo.

    Google Scholar 

  • Lee, C. K., Hwang, C. C., Singer, J. T., & Chaiken, R. F. (1979). Influence of passageway fires on ventilation flows. In Second International Mine Ventilation Congress, Reno, NV.

    Google Scholar 

  • Luque, V. (1988). Manual de ventilación de minas. Asociación de Investigación Tecnológica de Equipos Mineros. Madrid: AITEMIN.

    Google Scholar 

  • McPherson, M. J. (1993). Subsurface fires and explosions. In Subsurface ventilation and environmental engineering. Chapman & Hall.

    Google Scholar 

  • Mucho, T. P., Houlison, I. R., Smith, A. C., & Trevits, M. A. (2005). Coal mine inertisation by remote application. Proceedings of the 2005 US National Coal Show, pp 7–9.

    Google Scholar 

  • Ray, S. K., & Singh, R. P. (2007). Recent developments and practices to control fire in undergound coal mines. Fire Technology, 43(4), 285–300.

    Article  Google Scholar 

  • Schmidt, W., Grumbrecht, K., Bohm, H. J., & Blumel, H. (1973). On the mutual effect of open mine fires and ventilation design. Gluckauf Forschungsheft, 34(6), 213–220.

    Google Scholar 

  • Simode, E. (1976). Stabilisation de l´aérage en cas d´incendie dans les travaux du fond: Théorie de Budryk. En: Aérage. Document SIM N3. Industrie Minérale. Mine, pp. 2–76.

    Google Scholar 

  • Soundararajan, R., Amyotte, P. R., & Pegg, M. J. (1996). Explosibility hazard of iron sulphide dusts as a function of particle size. Journal of Hazardous Materials, 51(1–3), 225–239.

    Article  CAS  Google Scholar 

  • Stracher, G. B., & Taylor, T. P. (2004). Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. International Journal of Coal Geology, 59(1–2), 7–17.

    Article  CAS  Google Scholar 

  • Surkov, A. L. (1975). Determination of heat depression. In Problems of safety in coal mines. US Department of Interior.

    Google Scholar 

  • Thomas, P. H. (1970). Movement of smoke in horizontal corridors against an air flow. The Institution of Fire Engineers Quarterly, 30(77), 45–53.

    Google Scholar 

  • Trutwin, W. (1972). Estimation of the natural ventilating pressure caused by fire. In International journal of rock mechanics and mining sciences & geomechanics abstracts (vol. 9, no. 1, pp. 25–36). Pergamon.

    Google Scholar 

  • Weiss, E. S., Cashdollar, K. L., Sapko, M. J., & Bazala, E. M. (1995). Secondary explosion hazards during blasting in oil shale and sulfide ore mines.

    Google Scholar 

  • Zabetakis, M. G. (1965). Flammability characteristics of combustible gases and vapors (No. BULL-627). Washington DC: Bureau of Mines.

    Google Scholar 

  • Zabetakis, M. G., Stahl, R. W., & Watson, H. A. (1959). Determining the explosibility of mine atmospheres. BuMines IC 790.

    Google Scholar 

  • Zhang, J., Wagner, W., Prakash, A., Mehl, H., & Voigt, S. (2004a). Detecting coal fires using remote sensing techniques. International Journal of Remote Sensing, 25(16), 3193–3220.

    Article  Google Scholar 

  • Zhou, F., & Wang, D. (2005). Backdraft in descensionally ventilated mine fire. Journal of Fire Sciences, 23(3), 261–271.

    Article  CAS  Google Scholar 

Bibliography

  • Dougherty, J. J. (1969). Control of mine fires. Mining Extension Service, School of Mines, Appalachian Center, West Virginia University.

    Google Scholar 

  • Francart, W. J., & Beiter, D. A. (1997). Barometric pressure influence in mine fire sealing. In Proceedings of 6th international mine ventilation congress, Pittsburgh, PA, May (pp. 17–22).

    Google Scholar 

  • Froger, C., Jeger, C., & Pregermain, S. (1976). Feux de mine. In Aérage. Document SIM N3. Industrie Minérale. Mine 2–76.

    Google Scholar 

  • Gillies, A. D. S., Wala, A. M., & Wu, H. W. (2004). Case studies from application of numerical simulation software to examining the effects of fires on mine ventilation systems. In Proceedings of the 10th US mine ventilation symposium, pp. 445–455.

    Google Scholar 

  • Graham, J. I. (1914). Adsorption of oxygen by coal. Transactions of the Institution of Mining Engineers, XLVIII, 521.

    Google Scholar 

  • Graham, J. I. (1917–1918). The origin of blackdamp. Transactions of the Institution of Mining Engineers, LV, pp. 294–312.

    Google Scholar 

  • Jones, J. E., & Trickett J. C. (1954–1955). Some observations on the examination of gases resulting from explosions in colleries. Transactions of the Institution of Mining Engineers, 114, 768–790.

    Google Scholar 

  • Justin, T. R., & Kim, A. G. (1988). Mine fire diagnostics to locate and monitor abandoned mine fires. BuMines IC, 9184, 348–355.

    Google Scholar 

  • Kim, A. G. (2007). Greenhouse gases generated in underground coal-mine fires. En: Stracher, G. B. (Ed.). Geology of coal fires: case studies from around the world (Vol. 18). Geological Society of America.

    Google Scholar 

  • Kissel, F. N., Diamond, W. P., Beiter, D. A., Taylor, C. D., Goodman, G. V., Cecala, A. B., & Volkwein, J. C. (2006). Handbook for methane control in mining. IC 9486. CDC Wokplace Safety and Health.

    Google Scholar 

  • Koenning, T. H., & Bruce, W. E. (1987, October). Mine fire indicators. In Proceedings of the 3rd US mine ventilation symposium, University Park, PA (pp. 433–437).

    Google Scholar 

  • León Marco, P. (1992). Fuegos en minas de carbón. Madrid: Instituto Geológico y Minero (IGME).

    Google Scholar 

  • Litton, C. D. (1986). Gas equilibrium in sealed coal mines. BuMines RI 9031.

    Google Scholar 

  • Mitchell, D. W. (1984). Understanding a fire: Case studies. Presented at workshop on combating mine fires, Sept. 20–21, Eighty-Four, PA, p. 14.

    Google Scholar 

  • Mitchell, D. W. (1990). Interpreting the state of the fire. In: Mine Fires. Maclean Hunter Publishing, pp. 65–66.

    Google Scholar 

  • NFPA. (2000). NFPA 750 standard for the installation of water mist fire protection systems, 2000 Edition. Quincy, MA.

    Google Scholar 

  • Sánchez Arboledas, J. (1924). Incendios y Fuegos Subterráneos. Madrid: Artes de la Ilustración.

    Google Scholar 

  • Timko, R. J., & Derick, R. L. (1995). Detection and control of spontaneous heating in coal mine pillars: A case study. BuMines RI 9553, p. 18.

    Google Scholar 

  • U.S Code of Federal Regulations (2005). Title 30: Mineral Resources, Chapter I–Mine Safety and Health Administration, Department of Labor; Part 75-Mandatory Safety Standards-Underground Coal Mines, Subpart D-Ventilation, Sec. 75.321 Air Quality, Paragraph (a) (1).

    Google Scholar 

  • Zabetaksi, M. G., Stahl, R. W., & Watson, H. A. (1959). Determining the explosivity of mine atmospheres. U.S. Bureau of Mines. Bulletin IC7901, p. 20.

    Google Scholar 

  • Zhang, J., Wagner, W., Prakash, A., Mehl, H., & Voigt, S. (2004b). Detecting coal fires using remote sensing techniques. International Journal of Remote Sensing, 25(16), 3193–3220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Sierra .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sierra, C. (2020). The Role of Ventilation in Fires and Explosions. In: Mine Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-030-49803-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49803-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49802-3

  • Online ISBN: 978-3-030-49803-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics