Advertisement

Friedman and Some of His Critics on the Foundations of General Relativity

  • Ryan SamarooEmail author
Chapter
  • 66 Downloads
Part of the Einstein Studies book series (EINSTEIN, volume 15)

Abstract

The paper is an examination of Michael Friedman’s analysis of the conceptual structure of Einstein’s theory of gravitation, with a particular focus on a number of critical reactions to it. Friedman argues that conceptual frameworks in physics are stratified, and that a satisfactory analysis of a framework requires us to recognize the differences in epistemological character of its components. He distinguishes first-level principles that define a framework of empirical investigation from second-level principles that are formulable in that framework. On his account, the theory of Riemannian manifolds and the equivalence principle define the framework of empirical investigation in which Einstein’s field equations are an intellectual and empirical possibility. Friedman is a major interpreter of relativity and his view has provoked a number of critical reactions, nearly all of which miss the mark. I aim to free Friedman’s analysis of Einsteinian gravitation from a baggage of misconceptions and to defend the notion that physical theories are stratified. But I, too, am a critic and I criticize Friedman’s view on several counts, notably his characterization of a constitutive principle and his account of the principle of equivalence’s methodological role.

References

  1. Anderson, J. L. (1967). Principles of Relativity Physics. New York: Academic Press.Google Scholar
  2. Brown, H. (2005). Physical Relativity: Space-time Structure from a Dynamical Perspective. Oxford: Oxford University Press, 2005.Google Scholar
  3. Carnap, R. (1963). Autobiography. In The Philosophy of Rudolf Carnap, edited by P. Schilpp, pp. 3–86. La Salle, Illinois: Open Court.Google Scholar
  4. Darrigol, O. (2014). Physics and Necessity: Rationalist Pursuits from the Cartesian Past to the Quantum Present. Oxford: Oxford University Press.Google Scholar
  5. Darrigol, O. (forthcoming). Constitutive Principles versus Comprehensibility Conditions in Post- Kantian Physics. Synthese, doi: https://doi.org/10.1007/s11229-018-01948-2.
  6. Demopoulos, W. (2000). On the Origin and Status of our Conception of Number. Notre Dame Journal of Formal Logic41, pp. 210–26.Google Scholar
  7. Demopoulos, W. (2013). Logicism and its Philosophical Legacy. Cambridge: Cambridge University Press.Google Scholar
  8. DiSalle, R. (2006). Understanding Space-Time. Cambridge: Cambridge University Press.Google Scholar
  9. Domski, M. & Dickson, M. (eds.) (2010). Discourse on a New Method: Reinvigorating the Marriage of History and Philosophy of Science. Chicago: Open Court.Google Scholar
  10. Duhem, P. (1962). The Aim and Structure of Physical Theory. New York: Atheneum.Google Scholar
  11. Ehlers, J. (1973). Survey of General Relativity Theory. In Relativity, Astrophysics, and Cosmology, edited by Werner Israel, pp. 1-125. Dordrecht: D. Riedel.Google Scholar
  12. Ehlers, J., Pirani, F., & Schild, A. (1972). The Geometry of Free Fall and Light Propagation. In General Relativity: Papers in Honour of J. L. Synge, edited by L. O’Raifeartaigh, pp. 63-84. Oxford: Clarendon Press.Google Scholar
  13. Einstein, A. (1907). Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivitat und Elektronik4: 411-62. Vol. 2 of The Collected Works of Albert Einstein, edited by J. Stachel, pp. 432-88. Princeton: Princeton University Press, 1989.Google Scholar
  14. Einstein, A. (1911). Über den Einfluß der Schwerkraft auf dei Ausbreitung des Lichtes. Annalen der Physik35: 898-908. Vol. 3 of The Collected Works of Albert Einstein, edited by M. Klein et al., pp. 485-97. Princeton: Princeton University Press, 1993.Google Scholar
  15. Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik49: 769-822. Vol. 6 of The Collected Works of Albert Einstein, edited by A. Kox et al., pp. 283-339. Princeton: Princeton University Press, 1996.Google Scholar
  16. Einstein. A. (1922). The Meaning of Relativity. Princeton: Princeton University Press.Google Scholar
  17. Freund, P. G. O., Maheshwari, A., & Schonberg, E. (1969). Finite-Range Gravitation. Astrophysical Journal157, pp. 857-67.Google Scholar
  18. Friedman, M. (1983). Foundations of Space-Time Theories. Princeton: Princeton University Press.Google Scholar
  19. Friedman, M. (1997). Philosophical Naturalism. Proceedings and Addresses of the American Philosophical Association71(2), pp. 5-21.Google Scholar
  20. Friedman, M. (2001). Dynamics of Reason: The 1999 Kant Lectures of Stanford University. Stanford, CA: CSLI Publications.Google Scholar
  21. Friedman, M. (2010). Synthetic History Reconsidered. In Discourse on a New Method: Reinvigorating the Marriage of History and Philosophy of Science, edited by M. Domski & M. Dickson, pp. 571-813. Chicago: Open Court.Google Scholar
  22. Grice, H. P. & P. F. Strawson (1956). In Defense of a Dogma. The Philosophical Review65(2), pp. 141-58.Google Scholar
  23. Howard, D. (2004). Einstein’s Philosophy of Science. In The Stanford Encyclopedia of Philosophy, edited by E. Zalta, URL = <https://plato.stanford.edu/archives/fall2017/entries/einstein-philscience/>.
  24. Howard, D. (2010). “Let me briefly indicate why I do not find this standpoint natural.” Einstein, General Relativity, and the contingent a priori. In Discourse on a New Method: Reinvigorating the Marriage of History and Philosophy of Science, edited by M. Domski & M. Dickson, (pp. 333-55). Chicago: Open Court.Google Scholar
  25. Malament, D. (2012). Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. Chicago: University of Chicago Press.Google Scholar
  26. Norton, J. (1985). What was Einstein’s Principle of Equivalence? Studies in the History and Philosophy of Science16: 5-47.Google Scholar
  27. Pitts, B. (2016a). Einstein’s Equations for Spin 2 Mass 0 from Noether’s Converse Hilbertian Assertion. Studies in History and Philosophy of Modern Physics56, pp. 60-9.Google Scholar
  28. Pitts, B. (2016b). Space-time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination. Studies in History and Philosophy of Modern Physics53, pp. 73-92.Google Scholar
  29. Pitts, B. (2018). Kant, Schlick and Friedman on Space, Time and Gravity in Light of Three Lessons from Particle Physics. Erkenntnis83, pp. 135–161Google Scholar
  30. Quine, W. V. (1951). Two Dogmas of Empiricism. The Philosophical Review60, pp. 20–43.Google Scholar
  31. Quine, W. V. (1960). Carnap and Logical Truth. Synthese12(4), pp. 350–74.Google Scholar
  32. Reichenbach, H. (1928). The Philosophy of Space and Time. Translated by M. Reichenbach & J. Freund. New York: Dover, 1958.Google Scholar
  33. Samaroo, R. (2015). Friedman’s Thesis. Studies in History and Philosophy of Modern Physics52, 129–38.Google Scholar
  34. Samaroo, R. (2020). The Principle of Equivalence as a Criterion of Identity. Synthese197(8), pp.3481–3505.Google Scholar
  35. Schutz, B. (1985). A First Course in General Relativity. Cambridge: Cambridge University Press.Google Scholar
  36. Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. London: Wiley.Google Scholar
  37. Weyl, H. (1918). Reine Infinitesimalgeometrie. Mathematische Zeitschrift2, pp. 384–411.Google Scholar
  38. Weyl, H. (1921). Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffasung. Nachrichten der Königlichen Gesellschaft Wissenschaften zu Göttingen, Mathematische-Physikalische Klasse, pp. 99–112. Reprinted in Space-Time-Matter and translated by H. Brose. New York: Dover, 1950.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Somerville CollegeOxfordUK

Personalised recommendations