Implications of Urban Sustainability, Socio-ecosystems, and Ecosystem Services

Part of the Studies on Entrepreneurship, Structural Change and Industrial Dynamics book series (ESID)


This paper has the aim to analyze the implications that urban sustainability, socio-ecosystems, and ecosystem services have as the bases to design the urban green growth strategies. The method used is the analytic based on the theoretical and conceptual literature reviews on the topics described. A qualitative analysis offers better knowledge outcomes than a quantitative analysis using models that are based on a limited subset of implications between sustainability, socio-ecosystems, and ecosystem services with strong limitations because uncertainties and ambiguities are difficult to quantify if not impossible. Urban sustainability and environmental performance integrates biodiversity and socio-ecosystems for the provision of better quality ecosystem services supported by green infrastructure design into the green projects aimed to achieve economic and environmental benefits. It is concluded that the ecosystem services and human well-being may suffer irreversible severe declines if sustainability is not built based on biodiversity of socio-ecosystems, green infrastructure, and natural capital.


Urban sustainability Socio-ecosystems Ecosystem services 


  1. Adams, W. M., & Jeanrenaud, S. J. (2008). Transition to sustainability: Towards a humane and diverse world. Gland, Switzerland: International Union for the Conservation of Nature.Google Scholar
  2. Added Value. (2013). About us: Overview and mission. Retrieved April 13, 2013, from
  3. Adger, W. N. (2000). Social and ecological resilience: Are they related? Progress in Human Geography, 24(3), 347–364.Google Scholar
  4. Biggs, R., Bohensky, E., Desanker, E. V., Fabricius, C., Lynam, T., Misselhorn, A. A., Musvoto, C., Mutale, M., Ryers, B., Scholes, R. J., Shikongo, S., & van Jaarsveld, A. S. (2004). Nature supporting people: The Southern Africa Millennium Assessment. Praetoria: CSIR. Retrieved from
  5. Biggs, R., Westley, F. R., & Carpenter, S. R. (2010). Navigating the back loop: Fostering social innovation and transformation in ecosystem management. Ecology and Society, 15(2), Article 9.Google Scholar
  6. Binder, C. R., Feola, G., & Steinberger, J. K. (2010). Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environmental Impact Assessment Review, 30, 71–81.Google Scholar
  7. Blair, R. B. (1996). Land use and avian species diversity along an urban gradient. Ecological Applications, 6, 506–519.Google Scholar
  8. Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics., 29, 293–301. Scholar
  9. Brashares, J. S., Arcese, P., Sam, M. K., Coppolillo, P. B., Sinclair, A. R. E., & Balmford, A. (2004). Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science, 306, 1180–1183.Google Scholar
  10. Briguglio, L., Cordina, G., Farrugia, N., & Vella, S. (2009). Economic Vulnerability and Resilience: Concepts and Measurements. Oxford Development Studies, 37, 229–247.Google Scholar
  11. Brussard, P. F., Reed, J. M., & Tracy, C. R. (1998). Ecosystem management: What is it really? Landscape and Urban Planning, 40, 9–20.Google Scholar
  12. Burch Jr., W. R. (1988). Human ecology and environmental management. In J. K. Agee & D. R. Johnson (Eds.), Ecosystem management for parks and wilderness (pp. 145–159). Seattle: University of Washington Press.Google Scholar
  13. Carpenter, S. R. (2003). Regime shifts in lake ecosystems: Pattern and variation: Vol. 15. Excellence in ecology series. Oldendorf, Germany: Ecology Institute.Google Scholar
  14. CBD & WHO. (2015). Connecting global priorities – Biodiversity and human health, a state of knowledge review. Geneva: WHO.Google Scholar
  15. Chapin III, F. S., Matson, P. A., & Mooney, H. (2002). Principles of ecosystem ecology. New York: Springer.Google Scholar
  16. Chapin, F. S., Matson, P. A., & Mooney, H. A. (2011). Principles of terrestrial ecosystem ecology (2nd ed.). New York: Springer. ISBN 0-387-95443-0.Google Scholar
  17. Childers, D. L., Pickett, S. T. A., Grove, J. M., Ogden, L., & Whitmer, A. (2014). Advancing urban sustainability theory and action: Challenges and opportunities. Landscape and Urban Planning, 125, 320–328.Google Scholar
  18. Cohen, N., & Ackerman, K. (2011, November 21). Breaking new ground. The New York Times.Google Scholar
  19. Cottingham, K., Brown, B., & Lennon, J. (2001). Biodiversity may regulate the temporal variability of ecological systems. Ecology Letters, 4, 72–85.
  20. Crossman, N. D., Burkhad, B., Nedkov, S., Petz, K., Alkemade, R., Willemen, L., Palomo, I., et al. (2013). A blueprint for mapping and modelling ecosystem services. Ecosystem Services, 4, 4–14.
  21. Cumming, G. S., Cumming, D. H. M., & Redman, C. L. (2006). Scale mismatches in social–ecological systems: Causes, consequences, and solutions. Ecology and Society, 11(1), Article 14. Retrieved from
  22. DeAngelis, D. L. (1980). Energy flow, nutrient cycling, and ecosystem resilience. Ecology, 61, 764–771.Google Scholar
  23. Diamond, J. (2005). Collapse: How societies choose to fail or succeed. New York: Viking Press.Google Scholar
  24. Eco-Innovation Action Plan. (2011). Innovation for a sustainable future. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Retrieved October 03, 2014, from;ELX_SESSIONID=JBJhJh7RB5n2T7nTdZLLVLGRlJPCFRnTGM7ZvF8Wh H9TJryvnsvL!1821898924?uri=CELEX:52011DC0899.
  25. EcoStation: NY Inc. (2013). EcoStation: NY: Food justice + sustainable agriculture. Retrieved April 13, 2013, from
  26. Ehrenfeld, J. G., & Toth, L. A. (1997). Restoration ecology and the ecosystem perspective. Restoration Ecology, 5(4), 307–317.Google Scholar
  27. Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., Norberg, J. (2003). Response diversity, ecosystem change and resilience. Frontiers in Ecology and the Environment, 1, 488–494.Google Scholar
  28. Elmqvist, T., Setälä, H., Handel, S. N., van der Ploeg, S., Aronson, J., et al. (2015). Benefits of restoring ecosystem services in urban areas. Current Opinion in Environmental Sustainability, 14, 101–108.Google Scholar
  29. Ernstson, H., van der Leeuw, S. E., Redman, C. L., Meffert, D. J., Davis, G., Alfsen, C., & Elmqvist, T. (2010). Urban transitions: On urban resilience and human-dominated ecosystems. Ambio, 39(8), 531–545.
  30. Faeth, S. H., Bang, C., & Saari, S. (2011). Urban biodiversity: Patterns and mechanisms. Annual of the New York Academy of Sciences, 1223, 69–81. Scholar
  31. Farming Concrete. (2011). Farming Concrete: Harvest Report 2011. New York: Farming Concrete.Google Scholar
  32. Felson, A. J., Bradford, M. A., & Terway, T. M. (2013). Promoting Earth Stewardship through urban design experiments. Frontiers in Ecology and the Environment, 11(7), 362–367.Google Scholar
  33. Felson, A. J., & Pickett, S. T. A. (2005). Designed experiments: New approaches tostudying urban ecosystems. Frontiers in Ecology and the Environment, 10, 549–556.Google Scholar
  34. Fischer, J., Lindenmayer, D. B., & Manning, A. D. (2006). Biodiversity, ecosystemfunction, and resilience: Ten guiding principles for commodity productionlandscapes. Frontiers in Ecology and the Environment, 4, 80–86.Google Scholar
  35. Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010). Resilience thinking: Integrating resilience, adaptability and transformability. Ecology and Society, 15(4), 20. Retrieved from
  36. Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2005). Regime shifts, resilience and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics 35, 557–581.Google Scholar
  37. Foresman, T. W., Pickett, S. T. A., & Zipperer, W. C. (1997). Methods for spatial and temporal land use and land cover assessment for urban ecosystems and application in the greater Baltimore–Chesapeake region. Urban Ecosystems, 1, 201–216.Google Scholar
  38. Forman, R. T. T. (2008). Urban regions: Ecology and planning beyond the city. Cambridge: Cambridge University Press.Google Scholar
  39. Frost, T. M., Carpenter, S. R., Ives, A. R., & Kratz, T. K. (1995). Species compensation and complementarity in ecosystem function. In C. Jones & J. Lawton (Eds.), Linking species and ecosystems (pp. 224–239). New York: Chapman and Hall.Google Scholar
  40. Gergel, S. E., Bennett, E. M., Greenfield, B. K., King, S., Overdevest, C. A., & Stumborg, B. (2004). A test of the environmental Kuznets curve using long-term watershed inputs. Ecological Applications, 14(2), 555–570.Google Scholar
  41. Gittleman, M., Librizzi, L., & Stone, E. (2010). Community garden survey. New York City Results 2009/2010. New York City.Google Scholar
  42. Go green members program. (2014). Retrieved October 20, 2014, from
  43. Gómez-Baggethun, E., Barton, N. D., Langemeyer, J., McPhearson, T., O’Farrell, P., Andersson, E., Hamstead, Z., & Kremer, P.. (2013). Urban ecosystem services. In T. Elmqvist, M. Fragkias, J. Goodness, B. Güneralp, P. J. Marcotullio, R. I. McDonald, S. Parnell, et al. (Eds.), Urbanization, biodiversity and ecosystem services: Challenges and opportunities (pp. 175–251). Dordrecht: Springer Netherlands.
  44. Grumbine, R. E. (1994). What is ecosystem management? Conservation Biology, 8, 27–38.Google Scholar
  45. Guerry, A. D., & Hunter, M. L. (2002). Amphibian distributions in a landscape offorests and agriculture: An examination of landscape composition and configuration. Conservation Biology, 16, 745–754.Google Scholar
  46. Gunderson, L. H. (2000). Ecological resilience: In theory and application. Annual Review of Ecology and Systematics, 31, 425–439.Google Scholar
  47. Gunderson, L., & Folke, C. (2011). Resilience 2011: Leading transformational change. Ecology and Society, 16(2), 30. Retrieved from
  48. Gunderson, L. H., & Holling, C. (Eds.). (2002). Panarchy: Understanding transformations in human and natural systems (p. 507). Washington, DC: Island Press.Google Scholar
  49. Gunderson, L. H., Holling, C., & Light, S. (Eds.). (1995). Barriers and bridges for the renewal of ecosystems and institutions (593 pp). New York: Columbia University Press.Google Scholar
  50. Gunderson, L. H., Holling, C. S., Pritchard Jr., L., & Peterson, G. D. (2002). Resilience of large-scale resource systems. In L. H. Gunderson & L. Pritchard Jr. (Eds.), Resilience and the behavior of large-scale systems (pp. 3–48). Washington, DC: Island Press.Google Scholar
  51. Hansen, A. J., Defries, R., & Turner, W. (2004). Land use change and biodiversity: A synthesis of rates and consequences during the period of satellite imagery. In G. Gutman & C. Justice (Eds.), Land change science: Observing, monitoring, and understanding trajectories of change on the Earth’s surface (pp. 277–299). New York: Springer.Google Scholar
  52. Hobbs, R. (1997). Future landscapes and the future of landscape ecology. Landscape and Urban Planning, 37, 1–9.Google Scholar
  53. Holling, C. S. (1965). The functional response of predators to prey density and its role in mimicry and population regulations. Memoirs of the Entomological Society of Canada, 45, 1–60.Google Scholar
  54. Holling, C. S. (1978). Adaptive environmental assessment and management. Chichester: Wiley.Google Scholar
  55. Holling, C. S., & Gunderson, L. H. (2002). Resilience and adaptive cycles. In L. H. Gunderson & C. S. Holling (Eds.), Panarchy: Understanding transformations in human and natural systems (pp. 25–62). Washington, DC: Island Press.Google Scholar
  56. Howard, E. (1965). The town-country magnet. In F. J. Osborn (Ed.), Garden cities of tomorrow. Cambridge, MA: MIT Press.Google Scholar
  57. Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317, 58–62.Google Scholar
  58. Ives, A. R., Klug, J. L., & Gross, K. (1999). Stability and variability in competitive communities. Science, 286, 42–544.Google Scholar
  59. Jacobs, J. (1961). The death and life of American cities. New York: Random House.Google Scholar
  60. Kendle, T., & Forbes, S. (1997). Urban nature conservation. London: E & FN Spon.Google Scholar
  61. Khanna, N., & Plassman, F. (2004). The demand for environmental quality and the environmental Kuznets curve hypothesis. Ecological Economics, 51, 225–236.Google Scholar
  62. Koch, E. W., Barbier, E. B., Silliman, B. R., Reed, D. J., Perillo, G. M., Hacker, S. D., Granek, E. F., Primavera, J. H., Muthiga, N., Polasky, S., Halpern, B. S., Kennedy, C. J., Kappel, C. V., & Wolanski, E. (2009). Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment, 7(1), 29–37.Google Scholar
  63. Kremen, C. (2005). Managing ecosystem services: What do we need to know about their ecology? Ecology Letters, 8, 468–479. Scholar
  64. Kremer, P., Hamstead, Z. A., & McPhearson, T. A. (2013). Social–ecological assessment of vacant lots in New York City. Landscape and Urban Planning, 120, 218–233. Scholar
  65. Levin, S. (2005). Self-organization and the emergence of complexity in ecological systems. BioScience, 55(12), 1075–1079.Google Scholar
  66. Lewontin, R. C. (1969). The meaning of stability. Diversity and stability of ecological systems. Brookha ven Symp O Biologico, 22, 13–24.Google Scholar
  67. Lyle, J. T. (1994). Regenerative design for sustainable development. New York: Wiley.Google Scholar
  68. Lyle, J. T. (1999). Design for human ecosystems: Landscape, land use, and natural resources. Washington, DC: Island Press.Google Scholar
  69. MA Millennium Ecosystem Assessment. (2005a). Ecosystems and human well-being: Scenarios. Washington, DC: Island Press.Google Scholar
  70. MA Millennium Ecosystem Assessment. (2005b). Ecosystems and human well-being: Current state and trends. Washington, DC: Island Press.Google Scholar
  71. McCann, K. S. (2000). The diversity–stability debate. Nature, 405, 228–233.Google Scholar
  72. McGrath, B. (2013a). Slow, moderate, fast: Urban adaptation and change. In S. T. A. Pickett, M. L. Cadenasso, & B. McGrath (Eds.), Resilience in ecology and urban design: Linking theory and practice for sustainable cities (pp. 231–252). New York: Springer.Google Scholar
  73. McGrath, B. P. (Ed.). (2013b). Urban design ecologies. Hoboken, NJ: Wiley.Google Scholar
  74. McHarg, I. (1969). Design with nature. Garden City, NJ: Doubleday/Natural History Press.Google Scholar
  75. McHarg, I. L. (1992). Design with nature (Vol. 1). New York: Wiley.Google Scholar
  76. McHarg, I. L. (1994). Design with nature (2nd ed.). Garden City, NY: Natural History Press/Doubleday. (Orig. pub. 1969).Google Scholar
  77. McPhearson, T., Maddox, D., Gunther, B., & Bragdon, D. (2013). Local assessment of New York City: Biodiversity, green space, and ecosystem services. In T. Elmqvist, M. Fragkias, J. Goodness, B. Guneralp, P. J. Marcotullio, R. I. McDonald, S. Parnell, et al. (Eds.), Cities and biodiversity outlook: Urbanization, biodiversity and ecosystem services: Challenges and opportunities (pp. 355–383). Dordrecht: Springer Netherlands. Scholar
  78. McPhearson, T., & Tidball, K. G. (2013). Disturbances in urban social–ecological systems: Niche opportunities for environmental education. In M. Krasny & J. Dillon (Eds.), Trading zones in environmental education. Creating transdisciplinary dialogue. (Re)thinking environmental education. New York: Peter Lang.Google Scholar
  79. Mebaratu, D. (1998). Sustainability and sustainable development: Historical and conceptual review. Environmental Impact Assessment Review, 18(6), 493–520.Google Scholar
  80. Melles, S., Glenn, S., & Martin, K. (2003). Urban bird diversity and landscape complexity: Species–environment associations along a multiscale habitat gradient. Conservation Ecology, 7(1), 5. Scholar
  81. Munier, N. (2011). Methodology to select a set of urban sustainability indicators to measure the state of the city, and performance assessment. Ecological Indicators, 11, 1020–1026.Google Scholar
  82. Naeem, S. (2002a). Disentangling the impacts of diversity on ecosystem functioning in combinatorial experiments. Ecology, 83, 2925–2935.Google Scholar
  83. Naeem, S. (2002b). Ecosystem consequences of biodiversity loss: The evolution of a paradigm. Ecology, 83, 1537–1552.Google Scholar
  84. National Science Foundation. (2002, August 20). Biocomplexity in the environment (BE): Integrated research and education in environmental systems. NSF 02-167. Washington, DC: NSF.Google Scholar
  85. Naveh, Z. (2000). The total human ecosystem: Integrating ecology and economics. BioScience, 50, 357–361.Google Scholar
  86. Neubert, M. G., & Caswell, H. (1997). Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology, 78, 653–665.Google Scholar
  87. New York Restoration Project. (2013). NYRP Community Gardens. Retrieved April 12, 2013, from
  88. Norberg, J. (2004). Biodiversity and ecosystem functioning: A complex adaptive systems approach. Limnology and Oceanography, 49, 1269–1277.Google Scholar
  89. Norgaard, R. B. (2009). Ecosystem services: From eye-opening metaphor to complexity blinder. Ecological Economics, 69, 1219–1227.Google Scholar
  90. Olsson, P., Carpenter, S. R., Gunderson, L. H., Holling, C. S., Lebel, L., & Folke, C. (2006). Shooting the rapids—navigating transitions to adaptive ecosystem governance. Ecology and Society, 11(1), 18. Retrieved from
  91. Olsson, P., Folke, C., & Berkes, F. (2004). Adaptive co-management for building resilience in social ecological systems. Environmental Management, 34, 75–90.Google Scholar
  92. Ostrom, E. (2005). Understanding institutional diversity. New York: Princeton University Press.Google Scholar
  93. Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422. Scholar
  94. Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems, 1, 6–18.Google Scholar
  95. Pickett, S. T. A., & Grove, J. M. (2009). Urban ecosystems: What would Tansley do? Urban Ecosystems, 12, 1–8.Google Scholar
  96. Pickett, S.T.A., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology and Systematics, 32, 127–137.
  97. Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Groffman, P. M., Band, L. E., Boone, C. G., et al. (2008). Beyond urban legends: An emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study. BioScience, 58, 139–150.Google Scholar
  98. Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Boone, C. G., Groffman, P. M., Irwin, E., et al. (2011). Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 92(3), 331–362.
  99. Pimm, S. L., & Lawton, J. H. (1980). Are food webs divided into compartments? The Journal of Animal Ecology, 49, 879–898.Google Scholar
  100. Pincetl, S. (2012). Nature, urban development and sustainability – what new elements are needed for a more comprehensive understanding? Cities, 29(S2), S32–S37.Google Scholar
  101. Platt, R. H. (Ed.). (2006). The humane metropolis: People and nature in the twenty-first century city. Amherst, MA: University of Massachusetts Press.Google Scholar
  102. Primmer, E., & Furman, E. (2012). Operationalising ecosystem service approaches for governance: Do measuring, mapping and valuing integrate sector-specific knowledge systems? Ecosystem Services, 1, 85–92.Google Scholar
  103. Quin, A., Aviron, S., Dover, J., & Burel, F. (2004). Complementation/supplementation of resources for butterflies in agricultural landscapes. Agriculture, Ecosystems and Environment, 103, 473–479.Google Scholar
  104. Rapport, D. J., Costanza, R., & McMichael, A. J. (1998). Assessing ecosystem health. Trends Ecol Evol, 13, 397–402.Google Scholar
  105. Rees, W. E. (2000). Eco-footprint analysis: Merits and brickbats. Ecological Economics, 32, 371–374.Google Scholar
  106. Ricketts, T., & Imhoff, M. (2003). Biodiversity, urban areas, and agricul-ture: Locating priority ecoregions for conservation. Conservation Ecology, 8, 1. Retrieved from Scholar
  107. Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383–395.Google Scholar
  108. Sala, O. E., Chapin, F. S. I., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.Google Scholar
  109. Scheiner, S. M., & Willig, M. R. (Eds.). (2011). The theory of ecology. Chicago: University of Chicago Press.Google Scholar
  110. Shane, D. G. (2013). Urban patch dynamics and resilience: Three London urban design ecologies. In S. T. A. Pickett, M. L. Cadenasso, & B. McGrath (Eds.), Resilience in ecology and urban design: Linking theory and practice for sustainable cities (pp. 131–161). New York: Springer.Google Scholar
  111. Slocombe, D. S. (1998). Lessons from experience with ecosystem-based management. Landscape and Urban Planning, 40, 31–39.Google Scholar
  112. Stern, D. I. (1998). Progress on the environmental Kuznets curve? Environment and Development Economics, 3, 173–196.Google Scholar
  113. Suding, K. N., Gross, K. L., & Housman, D. R. (2004). Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol, 19, 46–53.Google Scholar
  114. Symes, M., Deakin, M., & Curwell, S. (2005). Introduction. In Sustainable urban development: The framework and protocols for environmental assessment (Vol. 1, pp. 1–16). New York: Routledge.Google Scholar
  115. Szaro, R. C., Sexton, W. T., & Malone, C. R. (1998). The emergence of ecosystem management as a tool for meeting people’s needs and sustaining ecosystems. Landscape and Urban Planning, 40, 1–7.Google Scholar
  116. Tallis, H., Levin, P. S., Ruckelshaus, M., Lester, S. E., McLeod, K. L., Fluharty, D. L., & Halpern, B. S. (2010). The many faces of ecosystem-based management: Making the process work today in real places. Marine Policy, 34, 340–348.Google Scholar
  117. Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16, 284–307.Google Scholar
  118. TEEB (The Economics of Ecosystems and Biodiversity). 2011. Manual for cities: Ecosystem services in urban management.. UNEP and the European Union.Google Scholar
  119. The Battery Conservancy. (2012). Battery urban farm. Retrieved April 13, 2013, from
  120. Troy, A., Grove, J. M., & O’Neil-Dunne, J. (2012). The relationship between tree canopy and crime rates across an urban rural gradient in the greater Baltimore region. Landscape and Urban Planning, 106(3), 262–270.Google Scholar
  121. UNEP. (2010). United Nations Environment Programme Green Economy Report. Retrieved October 03, 2014, from
  122. UN–United Nations. (2007). State of the World Population 2007: Unleashing the potential of urban growth. New York: UNFPA.Google Scholar
  123. Urban Security, Los Alamos National Laboratory. (1999). Annual report. LA-UR-99-5554. Retrieved from
  124. Vatn, A. (2005). Rationality, institutions and environmental policy. Ecological Economics, 55, 203–217.Google Scholar
  125. Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social–ecological systems. Ecology and Society, 9(2), Article 5.Google Scholar
  126. Williams, B. K. (2011). Adaptive management of natural resources: Framework and issues. Journal of Environmental Management, 92, 1346–1353.Google Scholar
  127. World Business Council for Sustainable Development, Geneva. (2002). deGeus, A. The Living Company. Cambridge: Harvard Business School Press, 1997.Google Scholar
  128. Yli-Pelkonen, V., & Niemelä, J. (2005). (1967). Linking ecological and social systems in cities: Urban planning in Finland as a case. Biodiversity and Conservation, 14, 1947–1967. Scholar
  129. Young, O. R. (2002). The institutional dimensions of environmental change: Fit, interplay, and scale (221 p). Cambridge: The MIT Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University Center for Economic and Managerial Sciences, University of Guadalajara, Núcleo Universitario Los BelenesZapopanMéxico
  2. 2.IPS Department International Planning Systems, Faculty of Spatial and Environmental PlanningTechnische Universität KaiserslauternKaiserslauternGermany
  3. 3.Faculty of ArchitectureWarsaw University of TechnologyWarsawPoland

Personalised recommendations