Skip to main content

Towards Laser Intensity Calibration Using High-Field Ionization

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XV

Part of the book series: Topics in Applied Physics ((TAP,volume 136))

Abstract

We present an approach for direct measurement of ultrahigh laser intensities in the range \(10^{20}\)\(10^{24}\) W/cm\(^2\). The method is based on the use of multiple sequential tunneling ionization of heavy atoms with adequately high ionization potentials. We show that, due to the highly nonlinear dependence of tunneling ionization rates on the electromagnetic field strength, an off-set in the charge distribution of ions appears to be clearly sensitive to the peak value of intensity in the laser focus. Based on the tunnel-ionization mechanism, a simple analytic theory helps in estimating the maximal charge state produced at a given laser intensity. Our theory also allows for calculating qualitatively a distribution in charge states generated in different zones of the laser focus. These qualitative predictions are in excellent agreement with numerical simulations of the tunneling cascades, developed in the interaction of a short tightly focused laser pulse with low-density noble gas targets. The method could be particularly useful and of instrumental demand in view of the expected commissioning of several new laser facilities, capable of delivering ultra-powerful light pulses in the above mentioned domain of intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Danson, D. Hillier, N. Hopps, D. Neely, High Power Laser Sci. Eng. 3, e3 (2015). https://doi.org/10.1017/hpl.2014.52

  2. M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H.T. Powell, M. Vergino, V. Yanovsky, Opt. Lett. 24, 160 (1999). https://doi.org/10.1364/OL.24.000160

  3. S.-W. Bahk, P. Rousseau, T.A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. Mourou, V. Yanovsky, Opt. Lett. 29, 2837 (2004). https://doi.org/10.1364/OL.29.002837

  4. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, Opt. Express 16, 2109 (2008). https://doi.org/10.1364/OE.16.002109

  5. J.-P. Chambaret, O. Chekhlov, G. Cheriaux et al., Proc. of SPIE 7721, 77211D (2010). https://doi.org/10.1117/12.854687

  6. A.V. Bashinov, A.A. Gonoskov, A.V. Kim, G. Mourou, A.M. Sergeev, Eur. Phys. J. Spec. Top. 223, 1105 (2014). https://doi.org/10.1140/epjst/e2014-02161-7

  7. E. Cartlidge, Science 359, 382 (2018). https://doi.org/10.1126/science.359.6374.382

  8. A.S. Pirozhkov, Y. Fukuda, M. Nishiuchi, H. Kiriyama, A. Sagisaka, K. Ogura, M. Mori, M. Kishimoto, H. Sakaki, N.P. Dover, K. Kondo, N. Nakanii, K. Huang, M. Kanasaki, K. Kondo, M. Kando, Opt. Express 25, 20486 (2017). https://doi.org/10.1364/OE.25.020486

  9. Z. Guo, L. Yu, J. Wang, C. Wang, Y. Liu, Z. Gan, W. Li, Y. Leng, X. Liang, R. Li, Opt. Express 26, 26776 (2017). https://doi.org/10.1364/OE.26.026776

  10. S. Weber et al., Matter Radiat. Extremes 2, 149 (2017). https://doi.org/10.1016/j.mre.2017.03.003

  11. G. Mourou, T. Tajima, S.V. Bulanov, 78, 309 (2009). https://doi.org/10.1103/RevModPhys.78.309

  12. A. Di Piazza, C. Müller, C.Z. Hatsagortsyan, C.H. Keitel, 84, 1177 (2012). https://doi.org/10.1103/RevModPhys.84.1177

  13. N.B. Narozhny, A.M. Fedotov, Contemp. Phys. 56, 249 (2015). https://doi.org/10.1080/00107514.2015.1028768

  14. U. Mohideen, M.H. Sher, H.W.K. Tom, G.D. Aumiller, O.R. Wood, R.R. Freeman, J. Bokor, P.H. Bucksbaum, 71, 509 (1993). https://doi.org/10.1103/PhysRevLett.71.509

  15. G.G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos, H. Walther, 72, 2851 (1994). https://doi.org/10.1103/PhysRevLett.72.2851

  16. K. Zrost, A. Rudenko, Th. Ergler, B. Feuerstein, V.L.B. de Jesus, C.D. Schröter, R. Moshammer, J. Ullrich, 39, S371 (2006). https://doi.org/10.1088/0953-4075/39/13/S10

  17. M. Kübel, M. Arbeiter, C. Burger, N.G. Kling, T. Pischke, R. Moshammer, T. Fennel, M.F. Kling, B. Bergues, 51, 134007 (2018). https://doi.org/10.1088/1361-6455/aac584

  18. D.N. Fittinghoff, P.R. Bolton, B. Chang, K.C. Kulander, 69, 2642 (1992). https://doi.org/10.1103/PhysRevLett.69.2642

  19. A. Becker, F.H.M. Faisal, 84, 3546 (2000). https://doi.org/10.1103/PhysRevLett.84.3546

  20. R. Kopold, W. Becker, H. Rottke, W. Sandner, 85, 3781 (2000). https://doi.org/10.1103/PhysRevLett.85.3781

  21. W. Becker, X.J. Liu, P.J. Ho, J.H. Eberly, 84, 1011 (2012). https://doi.org/10.1103/RevModPhys.84.1011

  22. H.G. Hetzheim, C.H. Keitel, 102, 083003 (2009). https://doi.org/10.1103/PhysRevLett.102.083003

  23. H. Bauke, H.G. Hetzheim, G.R. Mocken, M. Ruf, C.H. Keitel, 83, 063414 (2011). https://doi.org/10.1103/PhysRevA.83.063414

  24. E.A. Chowdhury, C.P.J. Barty, B.C. Walker, 63, 042712 (2001). https://doi.org/10.1103/PhysRevA.63.042712

  25. E.A. Chowdhury, B.C. Walker, J. Opt. Soc. Am. B 20, 109 (2003). https://doi.org/10.1364/JOSAB.20.000109

  26. K. Yamakawa, Y. Akahane, Y. Fukuda, M. Aoyama, N. Inoue, H. Ueda, 68, 065403 (2003). https://doi.org/10.1103/PhysRevA.68.065403

  27. K. Yamakawa, Y. Akahane, Y. Fukuda, M. Aoyama, J. Ma, N. Inoue, H. Ueda, H. Kiriyama, 50, 2515 (2003). https://doi.org/10.1080/09500340308233581

  28. A.M. Perelomov, V.S. Popov, M.V. Terentev, Zh. Eksp. Teor. Fiz. 50, 1393 (1966) (Sov. Phys. JETP 23, 924 (1966)). http://www.jetp.ac.ru/cgi-bin/dn/e_023_05_0924.pdf

  29. M.V. Ammosov, N.B. Delone, V.P. Krainov, Zh. Eksp. Teor. Fiz. 91, 2008 (1986) (Sov. Phys. JETP 64, 1191 (1986)). http://www.jetp.ac.ru/cgi-bin/dn/e_064_06_1191.pdf

  30. V.S. Popov, Usp. Fiz. Nauk 147, 921 (2004) (Phys. Usp. 47, 855 (Engl. transl.) (2004)). https://doi.org/10.3367/UFNr.0174.200409a.0921

  31. S.V. Popruzhenko, 47, 204001 (2014). https://doi.org/10.1088/0953-4075/47/20/204001

  32. B.M. Karnakov, V.D. Mur, S.V. Popruzhenko, V.S. Popov, Usp. Fiz. Nauk 185, 3 (2015) (Phys. Usp. 58, 3 (2015)). https://doi.org/10.3367/UFNe.0185.201501b.0003

  33. Y. Akahane, J. Ma, Y. Fukuda, M. Aoyoma, H. Kiriyama, J.V. Sheldakova, A.V. Kudryashov, K. Yamakawa, Rev. Sci. Instrum. 77, 023102 (2006). https://doi.org/10.1063/1.2166669

  34. M.F. Ciappina, S.V. Popruzhenko, S.V. Bulanov, T. Ditmire, G. Korn, S. Weber, 99 043405 (2019). https://doi.org/10.1103/PhysRevA.99.043405

  35. J. Fletcher, I.R. Cowling, 6, 258 (1973). https://doi.org/10.1088/0022-3700/6/9/010

  36. L.P. Pitaevskii, E.M. Lifshitz, Physical Kinetics (Elsevier Science, Amsterdam, 2012)

    Google Scholar 

  37. L.V. Keldysh, 47, 1945 (1964) (Sov. Phys. JETP 20, 1307 (1965))’ http://www.jetp.ac.ru/cgi-bin/dn/e_020_05_1307.pdf

  38. D.R. Hartree, Math. Proc. Camb. Philos. Soc. 24, 89 (1928). https://doi.org/10.1017/S0305004100011919

  39. E.G. Gelfer, A.M. Fedotov, S. Weber, Plasma Phys. Control. Fusion 60, 064005 (2018). https://doi.org/10.1088/1361-6587/aabb12

  40. I.Yu. Kostyukov, A.A. Golovanov, 98, 043407 (2018). https://doi.org/10.1103/PhysRevA.98.043407

  41. J. Strohaber, A.A. Kolomenskii, H.A. Schuessler, J. Appl. Phys. 118, 083107 (2015). https://doi.org/10.1063/1.4929654

  42. E.B. Saloman, J. Phys. Chem. Ref. Data 39, 033101 (2010). https://doi.org/10.1063/1.333766

  43. W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 90, vol. 2 (Cambridge University Press, Cambridge, UK, 1996)

    MATH  Google Scholar 

  44. E.B. Saloman, J. Phys. Chem. Ref. Data 36, 215 (2007). https://doi.org/10.1063/1.2227036

  45. E.B. Saloman, J. Phys. Chem. Ref. Data 33, 765 (2004). https://doi.org/10.1063/1.1649348

Download references

Acknowledgements

We are deeply indebted to S. V. Popruzhenko for useful comment and suggestions. Authors acknowledge fruitful discussions with D. Batheja. Supported by the project High Field Initiative (CZ.02.1.01/0.0/0.0/15_003/0000449) from European Regional Development Fund (HIFI) and by the project Advanced research using high intensity laser produced photons and particles (CZ.02.1.01/0.0/0.0/16_019/0000789) from European Regional Development Fund (ADONIS). The results of the project LQ1606 were obtained with the financial support of the Ministry of Education, Youth and Sports as part of targeted support from the National Programme of Sustainability II. M. F. C acknowledges Prof. K. Yamanouchi for the invitation to participate in this project and to M. Abe for her exceptional assistance. The text of the following chapter is partially reproduced from Ref. [34], with kind permission from the American Physical Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Ciappina .

Editor information

Editors and Affiliations

Appendices

Appendix A. Ionization Cascades

Starting from a given ground state of an atom or an ion, ionization can proceed along different pathways. Clearly, for multi electron atoms the total number of such paths grows very quickly with the atomic number. Most of them do not give any considerable contribution into the production of ionic states owing to the structure of the tunneling rate. The tunneling exponent in (8.9a) is maximal for the outermost electron which has the minimal ionization potential. This makes ionization of inner shells highly improbable before the outer shells have been stripped out, so that such ionization pathways can be safely discarded. However, when electrons are being removed from the same shell, ionization of lower s-levels may proceed with comparable or even higher probability than that of p-levels with lower ionization potentials. The reasons for that is (a) a smaller value of the asymptotic coefficients \(C^2_{\nu l}\) in (8.9b) and (b) the factor \(F^{|m|}\) in (8.9a), which is small for nonzero magnetic quantum numbers, owing to the condition \(F\ll 1\). As an example, for \(\mathrm{Kr}^{26+}\) with the ground state configuration \(1s^22s^22p^6\), ionization of a p-electron with \(I_p\approx \!2929\) eV proceeds with probability comparable to that for an s-electron whose ionization potential is by \(\Delta I_p\approx \!235\) eV higher [44]. Indeed, taking \(F\simeq F^*=0.05\), one obtains that the tunneling exponent for the p-electron is \(\exp (\Delta I_p/I_pF)\approx \!5\) times higher than that for the s-electron. At the same time, for the latter \(C_{\nu 0}^{2}=1.088, ~B_{00}=1\), while for the p-electron \(C_{\nu 1}^{2}=0.315\) and \(B_{10}=3\), \(B_{1\pm 1}=3/2\), and finally the factor \(F^{|m|}\) gives 0.05 for \(m=\pm 1\). Thus, the p-state rate averaged over the magnetic quantum number appears only 5 times greater than that of the s-state. For partially stripped p-shells the difference in ionization potentials appears to be even smaller, so that for configurations \(2s^22p\) or \(2s^22p^2\), the s- and p-rates are almost equal. These estimates show that the described sub-manifold of pathways may play an essential role in the ionization dynamics.

An example of the structure of levels is shown on Fig. 8.9 for the initial configuration \(1s^22s^22p^6\), which corresponds to the neutral neon, \(\mathrm{Ar}^{10+}\), \(\mathrm{Kr}^{26+}\), etc.

Fig. 8.9
figure 9

Substructure of levels and ionization pathways making the main contribution into sequential multiple ionization of atomic systems prepared in the ground \(1s^22s^22p^6\) state. Ground and excited states are shown by blue solid and dashed lines correspondingly. Most of the excited states consist of several sub-levels with different values of the full angular momentum J. The ionization pathway which involves only the ground states is shown by red arrows, all other pathways—by black arrows

For the initial configuration shown on Fig. 8.9 the total number of pathways is equal to 28. For the \(1s^22s^22p^2\) configuration only 5 relevant pathways left; starting from the \(1s^22s^2\) configuration ionization proceeds along the unique pathway.

Appendix B. Systems of Rate Equations

We solve numerically the system of rate equations for argon in the interval of intensities \(\mathcal{I}_m=10^{19}\)\(10^{22}\) W/cm\(^2\) and for krypton between \(\mathcal{I}_m=10^{19}\)\(10^{23}\) W/cm\(^2\) using an adaptive stepsize Runge-Kutta scheme [43]. We start with the simplest configuration \(1s^22s^2\) for argon (\(\mathrm{Ar}^{14+},~I_p\approx \!855\) eV). The value of \(I_p\) is well below that of 8.14 for \(10^{20}\)W/cm\(^2\) which is \(I_p^*\approx \!1420\) eV. For this initial configuration, only one relevant pathway contributes (see Fig. 8.9 and Appendix A). The resulting system of rate equations is therefore particularly simple and reads:

$$\begin{aligned} \frac{{\text {d}}c_{14}}{{\text {d}}t}=-2c_{14}w(\nu _{14},0,0;t), \end{aligned}$$
(B25)
$$\begin{aligned} \frac{{\text {d}}c_{15}}{{\text {d}}t}=2c_{14}w(\nu _{14},0,0;t)-c_{15}w(\nu _{15},0,0;t), \end{aligned}$$
(B26)
$$\begin{aligned} \frac{{\text {d}}c_{16}}{{\text {d}}t}=c_{15}w(\nu _{15},0,0;t)-2c_{16}w(\nu _{16},0,0;t), \end{aligned}$$
(B27)
$$\begin{aligned} \frac{{\text {d}}c_{17}}{{\text {d}}t}=2c_{16}w(\nu _{16},0,0;t)-c_{17}w(\nu _{17},0,0;t), \end{aligned}$$
(B28)
$$\begin{aligned} \frac{{\text {d}}c_{18}}{{\text {d}}t}=c_{17}w(\nu _{17},0,0;t). \end{aligned}$$
(B29)

Coefficients 2 in (B25)–(B28) are due to the presence of two equivalent electrons in the sub-shell.

For the interval of intensities used for Kr, the system of rate equations has to include p-states of the 2p shell. In order to simplify the calculations, we consider two cases: (a) the \(1s^22s^22p^6\) state as initial configuration, with only the most probably pathway accounted for (shown on Fig. 8.9 by red arrows) and (b) the \(1s^22s^22p^2\) as initial configuration with all relevant pathways accounted for (shown on Fig. 8.9 by red and black arrows). For case (a) the system explicitly reads:

$$\begin{aligned} \frac{{\text {d}}c_{26}}{{\text {d}}t}=-2c_{26}\{w(\nu _{26},1,0;t)+2w(\nu _{26},1,\pm 1;t)\}, \end{aligned}$$
(B30)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{27}}{{\text {d}}t}&=2c_{26}\{w(\nu _{26},1,0;t)+2w(\nu _{26},1,\pm 1;t)\} \\&\quad -\frac{5}{3}c_{27}\{w(\nu _{27},1,0;t)+2w(\nu _{27},1,\pm 1;t)\}, \end{aligned} \end{aligned}$$
(B31)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{28}}{{\text {d}}t}&=\frac{5}{3}c_{27}\{w(\nu _{27},1,0;t)+2w(\nu _{27},1,\pm 1;t)\}\\&\quad -\frac{4}{3}c_{28}\{w(\nu _{28},1,0;t)+2w(\nu _{28},1,\pm 1;t)\}, \end{aligned} \end{aligned}$$
(B32)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{29}}{{\text {d}}t}&=\frac{4}{3}c_{28}\{w(\nu _{28},1,0;t)+2w(\nu _{28},1,\pm 1;t)\}\\&\quad -c_{29}\{w(\nu _{29},1,0;t)+2w(\nu _{29},1,\pm 1;t)\}, \end{aligned} \end{aligned}$$
(B33)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{30}}{{\text {d}}t}&=c_{29}\{w(\nu _{29},1,0;t)+2w(\nu _{29},1,\pm 1;t)\}\\&\quad -\frac{2}{3}c_{30}\{w(\nu _{30},1,0;t)+2w(\nu _{30},1,\pm 1;t)\}, \end{aligned} \end{aligned}$$
(B34)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{31}}{{\text {d}}t}&=\frac{2}{3}c_{30}\{w(\nu _{30},1,0;t)+2w(\nu _{30},1,\pm 1;t)\} \\&\quad -\frac{1}{3}c_{31}\{w(\nu _{31},1,0;t)+2w(\nu _{31},1,\pm 1;t)\}, \end{aligned} \end{aligned}$$
(B35)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{32}}{{\text {d}}t}&=\frac{1}{3}c_{31}\{w(\nu _{31},1,0;t)\\&\quad +2w(\nu _{31},1,\pm 1;t)\}-2c_{32}w(\nu _{32},0,0;t), \end{aligned} \end{aligned}$$
(B36)
$$\begin{aligned} \frac{{\text {d}}c_{33}}{{\text {d}}t}=2c_{32}w(\nu _{32},0,0;t)-c_{33}w(\nu _{33},0,0;t), \end{aligned}$$
(B37)
$$\begin{aligned} \frac{{\text {d}}c_{34}}{{\text {d}}t}=c_{33}w(\nu _{33},0,0;t)-2c_{34}w(\nu _{34},0,0;t). \end{aligned}$$
(B38)

The system can be safely truncated by (B38), as the ionization potential of \(\mathrm{Kr}^{34+}\), \(I_p=17296\) eV, is too high to expect any considerable ionization below \(10^{23}\) W/cm\(^2\) (see Figs. 8.1 and 8.2). The effective principal quantum numbers \(\nu _{z}\) are calculated using data from [44].

For case (b) we take into account all relevant pathways (see red and black arrows in Fig. 8.9) up to the same ionic state as the one used in (a). As a result, excited states of two types, \(1s^22s2p^n\) and \(1s^22p^n\) with \(n=1,2\) enter in the calculation. We denote the values corresponding to these two sets of excited states by one and two primes, respectively. Then the system of rate equations reads:

$$\begin{aligned} \frac{{\text {d}}c_{30}}{{\text {d}}t}=-c_{30}\{\frac{2}{3}[w(\nu _{30},1,0;t)+2w(\nu _{30},1,\pm 1;t)]+2w(\nu '_{30},0,0;t)\}, \end{aligned}$$
(B39)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{31}}{{\text {d}}t}&=-c_{31}\{\frac{1}{3}[w(\nu _{31},1,0;t)+ \\ \quad&+2w(\nu _{31},1,\pm 1;t)]+2w(\nu '_{31},0,0;t)\}+c_{30}\frac{2}{3}[w(\nu _{30},1,0;t)+2w(\nu _{30},1,\pm 1;t)], \end{aligned} \end{aligned}$$
(B40)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c'_{31}}{{\text {d}}t}&=-c'_{31}\{\frac{2}{3}[w(\nu '_{31},1,0;t) \\&\quad +2w(\nu '_{31},1,\pm 1;t)]+w(\nu ''_{31},0,0;t)\}+2c_{30}w(\nu '_{30},0,0;t), \end{aligned} \end{aligned}$$
(B41)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{32}}{{\text {d}}t}&=-2c_{32}w(\nu _{32},0,0;t)\\&\quad +c_{31}\{\frac{1}{3}[w(\nu _{31},1,0;t)+2w(\nu _{31},1,\pm 1;t)]\}, \end{aligned} \end{aligned}$$
(B42)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c'_{32}}{{\text {d}}t}&=-c'_{32}\{\frac{1}{3}[w(\nu '_{32},1,0;t)+2w(\nu '_{32},1,\pm 1;t)]+w(\nu ''_{32},0,0;t)\} \\&\quad +2c_{31}w(\nu '_{31},0,0;t)+c'_{31}\{\frac{2}{3}[w(\nu '_{31},1,0;t)+2w(\nu '_{31},1,\pm 1;t)]\}, \end{aligned} \end{aligned}$$
(B43)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c''_{32}}{{\text {d}}t}&=-\frac{2}{3}c''_{32}[w(\nu ''_{32},1,0;t) \\&\quad +2w(\nu ''_{32},1,\pm 1;t)]+c'_{31}w(\nu ''_{31},0,0;t), \end{aligned} \end{aligned}$$
(B44)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{33}}{{\text {d}}t}&=-c_{33}w(\nu _{33},0,0;t)+2c_{32}w(\nu _{32},0,0;t)\\&\quad +\frac{1}{3}c'_{32}[w(\nu '_{32},1,0;t)+2w(\nu '_{32},1,\pm 1;t)], \end{aligned} \end{aligned}$$
(B45)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c''_{33}}{{\text {d}}t}&=-\frac{1}{3}c''_{33}[w(\nu '_{33},1,0;t)+2w(\nu '_{33},1,\pm 1;t)]\\&\quad +c'_{32}w(\nu ''_{32},0,0;t)+\frac{2}{3}c''_{32}[w(\nu ''_{32},1,0;t)+2w(\nu ''_{32},1,\pm 1;t)], \end{aligned} \end{aligned}$$
(B46)
$$\begin{aligned} \begin{aligned} \frac{{\text {d}}c_{34}}{{\text {d}}t}&=c_{33}w(\nu _{33},0,0;t)+\frac{1}{3}c''_{33}[w(\nu '_{33},1,0;t)\\&\quad +2w(\nu '_{33},1,\pm 1;t)]-2c_{34}w(\nu _{34},0,0;t). \end{aligned} \end{aligned}$$
(B47)
Table 8.1 Parameters for the first ionization cascade of Kr

Appendix C. Parameters for Krypton and Xenon

Here the values of \(I_p\), \(\nu \), \(C_{\nu l}^2\) and \(B_{lm}\) are given for the two ionization cascades in krypton described by (B30)–(B38) and (B39)–(B47) and for the xenon case, that can be simulated using the same set of rate equations (B25)–(B29), changing the respective ionic state populations and their associated parameters.

Fig. 8.10
figure 10

Same as on Fig. 8.9 but for the initial ground state \(1s^22s^22p^2\). See the text for details about the numeration of transitions and their parameters

The first case of Kr corresponds to ionization of the outermost orbitals (red arrows on Fig. 8.9) and starts from the \(1s^22s^22p^6\) state of \(\mathrm{Kr}^{26+}\). The parameters of the first ionization cascade are shown in the Table 8.1. The second one starts from the \(1s^22s^22p^2\) state of \(\mathrm{Kr}^{30+}\) and accounts all pathways (shown by red and black arrows on Fig. 8.9).

For this case one should take into account that several transitions may occur from/to a given state. These transitions are depicted and numbered in Fig. 8.10. The respective parameters are presented in Table 8.2.

Table 8.2 Parameters for the second ionization cascade of Kr (see text and Fig. 8.10 for more details)

Finally, we run the same system of rate equations (B25)–(B29) for xenon starting from the ground state configuration \(1s^22s^2\) of the \(\mathrm{Xe}^{50+}\) ion. The parameters are shown the Table 8.3.

Table 8.3 Parameters for Xe

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciappina, M.F., Bulanov, S.V., Ditmire, T., Korn, G., Weber, S. (2020). Towards Laser Intensity Calibration Using High-Field Ionization. In: Yamanouchi, K., Charalambidis, D. (eds) Progress in Ultrafast Intense Laser Science XV. Topics in Applied Physics, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-030-47098-2_8

Download citation

Publish with us

Policies and ethics