Complex Diffusion in Bacteria

  • Christopher H. Bohrer
  • Jie Xiao
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1267)


Diffusion within bacteria is often thought of as a “simple” random process by which molecules collide and interact with each other. New research however shows that this is far from the truth. Here we shed light on the complexity and importance of diffusion in bacteria, illustrating the similarities and differences of diffusive behaviors of molecules within different compartments of bacterial cells. We first describe common methodologies used to probe diffusion and the associated models and analyses. We then discuss distinct diffusive behaviors of molecules within different bacterial cellular compartments, highlighting the influence of metabolism, size, crowding, charge, binding, and more. We also explicitly discuss where further research and a united understanding of what dictates diffusive behaviors across the different compartments of the cell are required, pointing out new research avenues to pursue.


Diffusion Bacteria Crowding Viscoelastic Glass Mean squared displacement Confinement Single particle tracking Anomalous Diffusion Metabolism Charge Velocity autocorrelation function Cell envelope Outer membrane Inner membrane Periplasm. 



We would like to thank Dr. Xinxing Yang and Nicolas Yehya for their comments and feedback.


  1. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci 99:12651–12656PubMedGoogle Scholar
  2. Bakshi S, Siryaporn A, Goulian M, Weisshaar JC (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85:21–38PubMedPubMedCentralGoogle Scholar
  3. Bakshi S, Dalrymple RM, Li W, Choi H, Weisshaar JC (2013) Partitioning of RNA polymerase activity in live Escherichia coli from analysis of single-molecule diffusive trajectories. Biophys J 105:2676–2686PubMedPubMedCentralGoogle Scholar
  4. Balakrishnan V (1985) Anomalous diffusion in one dimension. Phys A Stat Mech Appl 132:569–580Google Scholar
  5. Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–612PubMedGoogle Scholar
  6. Beilharz K, van Raaphorst R, Kjos M, Veening J-W, Pettinari MJ (2015) Red fluorescent proteins for gene expression and protein localization studies in streptococcus pneumoniae and efficient transformation with DNA assembled via the Gibson assembly method. Appl Environ Microbiol 81:7244–7252PubMedPubMedCentralGoogle Scholar
  7. Bettridge K, Verma S, Weng X, Adhya S, Xiao J (2019) Single molecule tracking reveals the role of transitory dynamics of nucleoid-associated protein HU in organizing the bacterial chromosome. BioRxiv 181:2019.12.31.725226Google Scholar
  8. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645PubMedGoogle Scholar
  9. Bisson-Filho AW, Hsu Y-P, Squyres GR, Kuru E, Wu F, Jukes C, Sun Y, Dekker C, Holden S, VanNieuwenhze MS, Brun YV, Garner EC (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:739–743PubMedPubMedCentralGoogle Scholar
  10. Bohrer CH, Roberts E (2016) A biophysical model of supercoiling dependent transcription predicts a structural aspect to gene regulation. BMC Biophys 9:1Google Scholar
  11. Bohrer CH, Bettridge K, Xiao J (2017) Reduction of confinement error in single-molecule tracking in live bacterial cells using SPICER. Biophys J 112:568–574PubMedPubMedCentralGoogle Scholar
  12. Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276:20213–20219PubMedGoogle Scholar
  13. Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J, Garland PB (1986) Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol 165:787–795PubMedPubMedCentralGoogle Scholar
  14. Camsund D, Lawson MJ, Larsson J, Jones D, Zikrin S, Fange D, Elf J (2020) Time-resolved imaging-based CRISPRi screening. Nat Methods 17:86–92PubMedGoogle Scholar
  15. Cayley S, Lewis BA, Guttman HJ, Record MT Jr (1991) Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: implications for protein-DNA interactions in vivo. J Mol Biol 222:281–300PubMedGoogle Scholar
  16. Chichili GR, Rodgers W (2009) Cytoskeleton-membrane interactions in membrane raft structure. Cell Mol Life Sci CMLS 66:2319–2328PubMedGoogle Scholar
  17. Cho S-H, Szewczyk J, Pesavento C, Zietek M, Banzhaf M, Roszczenko P, Asmar A, Laloux G, Hov A-K, Leverrier P, Van der Henst C, Vertommen D, Typas A, Collet J-F (2014) Detecting envelope stress by monitoring β-barrel assembly. Cell 159:1652–1664PubMedGoogle Scholar
  18. Chong S, Chen C, Ge H, Xie XS (2014) Mechanism of transcriptional bursting in bacteria. Cell 158:314–326PubMedPubMedCentralGoogle Scholar
  19. Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17:R253–R285Google Scholar
  20. Cole NB (2013) Site-specific protein labeling with SNAP-tags. Curr Protoc Protein Sci 73:30.1.1–30.1.16Google Scholar
  21. Condamin S, Tejedor V, Voituriez R, Bénichou O, Klafter J (2008) Probing microscopic origins of confined subdiffusion by first-passage observables. Proc Natl Acad Sci U S A 105:5675–5680PubMedPubMedCentralGoogle Scholar
  22. Das R, Cairo CW, Coombs D (2009) A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput Biol 5:e1000556PubMedPubMedCentralGoogle Scholar
  23. Deich J, Judd EM, McAdams HH, Moerner WE (2004) Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc Natl Acad Sci 101:15921–15926PubMedGoogle Scholar
  24. Dempwolff F, Schmidt FK, Hervás AB, Stroh A, Rösch TC, Riese CN, Dersch S, Heimerl T, Lucena D, Hülsbusch N, Stuermer CAO, Takeshita N, Fischer R, Eckhardt B, Graumann PL (2016) Super resolution fluorescence microscopy and tracking of bacterial flotillin (Reggie) paralogs provide evidence for defined-sized protein microdomains within the bacterial membrane but absence of clusters containing detergent-resistant proteins. PLoS Genet 12:e1006116PubMedPubMedCentralGoogle Scholar
  25. Deng W, Barkai E (2009) Ergodic properties of fractional Brownian-Langevin motion. Phys Rev E 79:011112Google Scholar
  26. Denoncin K, Vertommen D, Arts IS, Goemans CV, Rahuel-Clermont S, Messens J, Collet J-F (2014) A new role for Escherichia coli DsbC protein in protection against oxidative stress. J Biol Chem 289:12356–12364PubMedPubMedCentralGoogle Scholar
  27. de Pedro MA, Grünfelder CG, Schwarz H (2004) Restricted mobility of cell surface proteins in the polar regions of Escherichia coli. J Bacteriol 186:2594–2602PubMedPubMedCentralGoogle Scholar
  28. Dorman CJ, Dorman MJ (2016) DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 8:89–100PubMedPubMedCentralGoogle Scholar
  29. Drlica K, Rouviere-Yaniv J (1987) Histonelike proteins of bacteria. Microbiol Rev 51:301–319PubMedPubMedCentralGoogle Scholar
  30. Einstein A (2007) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, pp 1–12Google Scholar
  31. Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S (1999) Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181:197–203PubMedPubMedCentralGoogle Scholar
  32. Elson EL (2011) Fluorescence correlation spectroscopy: past, present, future. Biophys J 101:2855–2870PubMedPubMedCentralGoogle Scholar
  33. Foley M, Brass JM, Birmingham J, Cook WR, Garland PB, Higgins CF, Rothfield LI (1989) Compartmentalization of the periplasm at cell division sites in Escherichia coli as shown by fluorescence photobleaching experiments. Mol Microbiol 3:1329–1336PubMedGoogle Scholar
  34. Fu G, Bandaria JN, Le Gall AV, Fan X, Yildiz A, Mignot T, Zusman DR, Nan B (2018) MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc Natl Acad Sci U S A 115:2484–2489PubMedPubMedCentralGoogle Scholar
  35. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049PubMedPubMedCentralGoogle Scholar
  36. Gebhardt JCM, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Maniatis T, Xie XS (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10:421–426PubMedPubMedCentralGoogle Scholar
  37. Gibbs KA, Isaac DD, Xu J, Hendrix RW, Silhavy TJ, Theriot JA (2004) Complex spatial distribution and dynamics of an abundant Escherichia coli outer membrane protein, LamB. Mol Microbiol 53:1771–1783PubMedGoogle Scholar
  38. Goemans C, Denoncin K, Collet J-F (2014) Folding mechanisms of periplasmic proteins. Biochim Biophys Acta Mol Cell Res 1843:1517–1528Google Scholar
  39. Goiko M, de Bruyn JR, Heit B (2016) Short-lived cages restrict protein diffusion in the plasma membrane. Nat Publ Group 6:34987Google Scholar
  40. Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96:098102PubMedGoogle Scholar
  41. Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP, Dong P, Brown TA, Lippincott-Schwartz J, Liu Z, Lionnet T, Lavis LD (2016) Bright photoactivatable fluorophores for single-molecule imaging. Nat Methods 13:985–988PubMedGoogle Scholar
  42. Grote GRMK, Risse JM, Friehs K (2018) Secretion of recombinant proteins from E. coli. Eng Life Sci 18:532–550Google Scholar
  43. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465PubMedGoogle Scholar
  44. Havlin S, Ben-Avraham D (1987) Diffusion in disordered media. Adv Phys 36:695–798. Taylor & FrancisGoogle Scholar
  45. He Y, Burov S, Metzler R, Barkai E (2008) Random time-scale invariant diffusion and transport coefficients. Phys Rev Lett 101:058101PubMedGoogle Scholar
  46. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272PubMedPubMedCentralGoogle Scholar
  47. Hobot JA, Villiger W, Escaig J, Maeder M, Ryter A, Kellenberger E (1985) Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria. J Bacteriol 162:960–971PubMedPubMedCentralGoogle Scholar
  48. Hu L, Vecchiarelli AG, Mizuuchi K, Neuman KC, Liu J (2015) Directed and persistent movement arises from mechanochemistry of the ParA/ParB system. Proc Natl Acad Sci U S A 112:E7055–64PubMedPubMedCentralGoogle Scholar
  49. Hunter GL, Weeks ER (2012) The physics of the colloidal glass transition. Reports on progress in physics. Phys Soc 75:066501Google Scholar
  50. Kapanidis AN, Uphoff S, Stracy M (2018) Understanding protein mobility in bacteria by tracking single molecules. J Mol Biol 430:4443–4455PubMedPubMedCentralGoogle Scholar
  51. Kim SY, Gitai Z, Kinkhabwala A, Shapiro L, Moerner WE (2006) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci 103:10929–10934PubMedGoogle Scholar
  52. Konopka MC, Shkel IA, Cayley S, Record MT, Weisshaar JC (2006) Crowding and confinement effects on protein diffusion in vivo. J Bacteriol 188:6115–6123PubMedPubMedCentralGoogle Scholar
  53. Kumar M, Mommer MS, Sourjik V (2010) Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. Biophys J 98:552–559PubMedPubMedCentralGoogle Scholar
  54. Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040PubMedPubMedCentralGoogle Scholar
  55. Lampo TJ, Stylianidou S, Backlund MP, Wiggins PA, Spakowitz AJ (2017a) Cytoplasmic RNA-protein particles exhibit non-Gaussian subdiffusive behavior. Biophys J 112:532–542PubMedPubMedCentralGoogle Scholar
  56. Lampo TJ, Stylianidou S, Backlund MP, Wiggins PA, Spakowitz AJ (2017b) Cytoplasmic RNA-protein particles exhibit non-Gaussian subdiffusive behavior. Biophys J 112:532–542PubMedPubMedCentralGoogle Scholar
  57. Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci U S A 105:15376–15381PubMedPubMedCentralGoogle Scholar
  58. Lee S-H, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci U S A 109:17436–17441PubMedPubMedCentralGoogle Scholar
  59. Lenn T, Leake MC, Mullineaux CW (2008) Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol Microbiol 70:1397–1407PubMedGoogle Scholar
  60. Lessen HJ, Fleming PJ, Fleming KG, Sodt AJ (2018) Building blocks of the outer membrane: calculating a general elastic energy model for β-barrel membrane proteins. J Chem Theory Comput 14:4487–4497PubMedPubMedCentralGoogle Scholar
  61. Lopez D, Koch G (2017) Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 36:76–84PubMedPubMedCentralGoogle Scholar
  62. Lorén N, Nydén M, Hermansson A-M (2009) Determination of local diffusion properties in heterogeneous biomaterials. Adv Colloid Interface Sci 150:5–15PubMedGoogle Scholar
  63. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382PubMedGoogle Scholar
  64. Lucena D,Mauri M, Schmidt F, Eckhardt B, Graumann PL (2018) Microdomain formation is a general property of bacterial membrane proteins and induces heterogeneity of diffusion patterns. BMC biology, 16(1):1–17Google Scholar
  65. Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR Jr, Luo Z-G, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139PubMedGoogle Scholar
  66. Lutz E (2001) Fractional Langevin equation. Phys Rev E Stat Nonlinear Soft Matter Phys 64:051106Google Scholar
  67. Martin DS, Forstner MB, Käs JA (2002) Apparent subdiffusion inherent to single particle tracking. Biophys J 83:2109–2117PubMedPubMedCentralGoogle Scholar
  68. Mas G, Thoma J, Hiller S (2019) The periplasmic chaperones Skp and SurA. In: Kuhn A (ed) Bacterial cell walls and membranes. Springer, Cham, pp 169–186Google Scholar
  69. Matsuda Y, Hanasaki I, Iwao R, Yamaguchi H, Niimi T (2018) Estimation of diffusive states from single-particle trajectory in heterogeneous medium using machine-learning methods. Phys Chem Chem Phys PCCP 20:24099–24108PubMedGoogle Scholar
  70. Michalet X, Berglund AJ (2012) Optimal diffusion coefficient estimation in single-particle tracking. Phys Rev E Stat Nonlinear Soft Matter Phys 85:061916Google Scholar
  71. Mika JT, Poolman B (2011) Macromolecule diffusion and confinement in prokaryotic cells. Curr Opin Biotechnol 22:117–126PubMedGoogle Scholar
  72. Mullineaux CW, Nenninger A, Ray N, Robinson C (2006) Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J Bacteriol 188:3442–3448PubMedPubMedCentralGoogle Scholar
  73. Nagle JF (1992) Long tail kinetics in biophysics? Biophys J 63:366–370PubMedPubMedCentralGoogle Scholar
  74. Nielsen HJ, Li Y, Youngren B, Hansen FG, Austin S (2006) Progressive segregation of the Escherichia coli chromosome. Mol Microbiol 61:383–393PubMedGoogle Scholar
  75. Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95:2009–2016PubMedPubMedCentralGoogle Scholar
  76. Oddershede L, Dreyer JK, Grego S, Brown S, Berg-Sørensen K (2002) The motion of a single molecule, the lambda-receptor, in the bacterial outer membrane. Biophys J 83:3152–3161PubMedPubMedCentralGoogle Scholar
  77. Oh D, Yu Y, Lee H, Wanner BL, Ritchie K (2014) Dynamics of the serine chemoreceptor in the Escherichia coli inner membrane: a high-speed single-molecule tracking study. Biophys J 106:145–153PubMedPubMedCentralGoogle Scholar
  78. Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the aequorea victoria green fluorescent protein. Science 273:1392–1395PubMedGoogle Scholar
  79. Oswald F, Varadarajan A, Lill H, Peterman EJG, Bollen YJM (2016) MreB-dependent organization of the E. coli cytoplasmic membrane controls membrane protein diffusion. Biophys J 110:1139–1149PubMedPubMedCentralGoogle Scholar
  80. Oyama N, Kawasaki T, Mizuno H, Ikeda A (2019) Glassy dynamics of a model of bacterial cytoplasm with metabolic activities. Phys Rev Res 1:032038Google Scholar
  81. Pan W, Filobelo L, Pham NDQ, Galkin O, Uzunova VV, Vekilov PG (2009) Viscoelasticity in homogeneous protein solutions. Phys Rev Lett 102:108–4Google Scholar
  82. Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194PubMedGoogle Scholar
  83. Perez AJ, Cesbron Y, Shaw SL, Bazan Villicana J, Tsui H-CT, Boersma MJ, Ye ZA, Tovpeko Y, Dekker C, Holden S, Winkler ME (2019) Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 116:3211–3220PubMedPubMedCentralGoogle Scholar
  84. Persson F, Lindén M, Unoson C, Elf J (2013) Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat Methods 10:265–269PubMedGoogle Scholar
  85. Postow L, Hardy CD, Arsuaga J, Cozzarelli NR (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18:1766–1779PubMedPubMedCentralGoogle Scholar
  86. Rassam P, Copeland NA, Birkholz O, Tóth C, Chavent M, Duncan AL, Cross SJ, Housden NG, Kaminska R, Seger U, Quinn DM, Garrod TJ, Sansom MSP, Piehler J, Baumann CG, Kleanthous C (2015) Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 523:333–336PubMedPubMedCentralGoogle Scholar
  87. Rayan G, Guet J-E, Taulier N, Pincet F, Urbach W (2010) Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromolecules. Sensors 10:5927–5948PubMedGoogle Scholar
  88. Ringgaard S, van Zon J, Howard M, Gerdes K (2009) Movement and equipositioning of plasmids by ParA filament disassembly. Proc Natl Acad Sci U S A 106:19369–19374PubMedPubMedCentralGoogle Scholar
  89. Rudner DZ, Losick R (2010) Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2:a000307–a000307PubMedPubMedCentralGoogle Scholar
  90. Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66PubMedGoogle Scholar
  91. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796PubMedPubMedCentralGoogle Scholar
  92. Sadoon AA, Wang Y (2018) Anomalous, non-Gaussian, viscoelastic, and age-dependent dynamics of histonelike nucleoid-structuring proteins in live Escherichia coli. Physical Review E, 98(4):042411Google Scholar
  93. Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci 72:3111–3113PubMedGoogle Scholar
  94. Schavemaker PE, Śmigiel WM, Poolman B (2017) Ribosome surface properties may impose limits on the nature of the cytoplasmic proteome. eLife 6Google Scholar
  95. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572PubMedGoogle Scholar
  96. Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN, Israelsson M, Davidson MW, Wang J (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10:407–409PubMedPubMedCentralGoogle Scholar
  97. Slator PJ, Burroughs NJ (2018) A hidden Markov model for detecting confinement in single-particle tracking trajectories. Biophys J 115:1741–1754PubMedPubMedCentralGoogle Scholar
  98. Sochacki KA, Shkel IA, Record MT, Weisshaar JC (2011) Protein diffusion in the periplasm of E. coli under osmotic stress. Biophys J 100:22–31PubMedPubMedCentralGoogle Scholar
  99. Spector J, Zakharov S, Lill Y, Sharma O, Cramer WA, Ritchie K (2010) Mobility of BtuB and OmpF in the Escherichia coli outer membrane: implications for dynamic formation of a translocon complex. Biophys J 99:3880–3886PubMedPubMedCentralGoogle Scholar
  100. Stepanenko OV, Stepanenko OV, Shcherbakova DM, Kuznetsova IM, Turoverov KK, Verkhusha VV (2011) Modern fluorescent proteins: from chromophore formation to novel intracellular applications. BioTechniques 51:313–4–316–318 passimGoogle Scholar
  101. Stracy M, Uphoff S, Garza de Leon F, Kapanidis AN (2014) In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett 588:3585–3594PubMedGoogle Scholar
  102. Stracy M, Lesterlin C, Garza de Leon F, Uphoff S, Zawadzki P, Kapanidis AN (2015) Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 112:E4390–E4399PubMedPubMedCentralGoogle Scholar
  103. Stracy M, Wollman AJ, Kaja E, Gapinski J, Lee J-E, Leek VA, McKie SJ, Mitchenall LA, Maxwell A, Sherratt DJ, Leake MC, Zawadzki P (2018) Single-molecule imaging of DNA gyrase activity in living Escherichia coli. Nucleic Acids Res 6:11055–11Google Scholar
  104. Strahl H, Bürmann F, Hamoen LW (2014) The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 5:3442PubMedPubMedCentralGoogle Scholar
  105. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159PubMedPubMedCentralGoogle Scholar
  106. Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72:1900–1907PubMedPubMedCentralGoogle Scholar
  107. Terry BR, Matthews EK, Haseloff J (1995) Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy. Biochem Biophys Res Commun 217:21–27PubMedGoogle Scholar
  108. Thapa S, Lomholt MA, Krog J, Cherstvy AG, Metzler R (2018) Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data. Phys Chem Chem Phys PCCP 20:29018–29037PubMedGoogle Scholar
  109. van den Bogaart G, Hermans N, Krasnikov V, Poolman B (2007) Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress. Mol Microbiol 64:858–871PubMedGoogle Scholar
  110. Verhoeven GS, Dogterom M, den Blaauwen T (2013) Absence of long-range diffusion of OmpA in E. coli is not caused by its peptidoglycan binding domain. BMC Microbiol 13:66Google Scholar
  111. Vink JNA, Martens KJA, Vlot M, McKenzie RE, Almendros C, Estrada Bonilla B, Brocken DJW, Hohlbein J, Brouns SJJ (2020) Direct visualization of native CRISPR target search in live bacteria reveals cascade DNA surveillance mechanism. Mol Cell 77:39–50.e10Google Scholar
  112. von Hippel PH, Berg OG (1989) Facilitated target location in biological systems. J Biol Chem 264:675–678Google Scholar
  113. Vrljic M, Nishimura SY, Moerner WE (2007) Single-molecule tracking. Methods Mol Biol 398:193–219PubMedGoogle Scholar
  114. Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (2010) Robust growth of Escherichia coli. Curr Biol CB 20:1099–1103PubMedGoogle Scholar
  115. Wang W, Li G-W, Chen C, Xie XS, Zhuang X (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–1449PubMedPubMedCentralGoogle Scholar
  116. Weber SC, Spakowitz AJ, Theriot JA (2010a) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104:238102PubMedPubMedCentralGoogle Scholar
  117. Weber SC, Theriot JA, Spakowitz AJ (2010b) Subdiffusive motion of a polymer composed of subdiffusive monomers. Phys Rev E 82:011913Google Scholar
  118. Weber SC, Thompson MA, Moerner WE, Spakowitz AJ, Theriot JA (2012a) Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophys J 102:2443–2450PubMedPubMedCentralGoogle Scholar
  119. Weber SC, Spakowitz AJ, Theriot JA (2012b) Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc Natl Acad Sci U S A 109:7338–7343PubMedPubMedCentralGoogle Scholar
  120. Weeks ER, Weitz DA (2002) Properties of cage rearrangements observed near the colloidal glass transition. Phys Rev Lett 89:095704PubMedGoogle Scholar
  121. Weiss M (2013) Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids. Phys Rev E 88:010101Google Scholar
  122. Weng X, Bohrer CH, Bettridge K, Lagda AC, Cagliero C, Jin DJ, Xiao J (2018) RNA polymerase organizes into distinct spatial clusters independent of ribosomal RNA transcription in E. coli. BioRxiv 320481Google Scholar
  123. Wheeler RT, Shapiro L (1999) Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 4:683–694PubMedGoogle Scholar
  124. Winick M (1968) Changes in nucleic acid and protein content of the human brain during growth. Pediatr Res 2:352–355PubMedGoogle Scholar
  125. Winther T, Xu L, Berg-Soslashrensen K, Brown S, Oddershede LB (2009) Effect of energy metabolism on protein motility in the bacterial outer membrane. Biophys J 97:1305–1312PubMedPubMedCentralGoogle Scholar
  126. Xiao J, Elf J, LiG, Yu J, Xie XS (2007) Imaging gene expression in living cells at the single-molecule level. In Single Molecules: a laboratory manual, Edited by Selvin P and Ha T, Cold Spring Harbor Press, New York city, 149–160Google Scholar
  127. Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J (2017) GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355:744–747PubMedPubMedCentralGoogle Scholar
  128. Yeow EKL, Melnikov SM, Bell TDM, Schryver FCD, Hofkens J (2006) Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface. J Phys Chem A 110:1726–1734PubMedGoogle Scholar
  129. Zhang F, Lee GM, Jacobson K (1993) Protein lateral mobility as a reflection of membrane microstructure. BioEssays News Rev Mol Cell Dev Biol 15:579–588Google Scholar
  130. Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in Mammalian cells. Biochem Biophys Res Commun 227:707–711PubMedGoogle Scholar
  131. Zhang LC, Chen YF, Chen WL, Zhang CC (2008) Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 70:814–823PubMedGoogle Scholar
  132. Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729PubMedGoogle Scholar
  133. Zhang LC, Risoul V, Latifi A, Christie JM, Zhang CC (2013) Exploring the size limit of protein diffusion through the periplasm in cyanobacterium Anabaena sp. PCC 7120 using the 13 kDa iLOV fluorescent protein. Res Microbiol 164:710–717PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christopher H. Bohrer
    • 1
    • 2
  • Jie Xiao
    • 1
  1. 1.Department of Biophysics and Biophysical ChemistryJohns Hopkins School of MedicineBaltimoreUSA
  2. 2.Department of BiophysicsJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations