Skip to main content

Bacterial Communities from Deep Hydrothermal Systems: The Southern Gulf of California as an Example of Primeval Environments

  • Chapter
  • First Online:
Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth

Abstract

Deep hydrothermal systems result from the magmatic and tectonic activity of the ocean floor. This deep extreme biosphere represents a unique oasis of life driven by sulfur-based chemosynthesis instead of photosynthesis. The organisms inhabiting these systems are adapted to cope with harsh environmental conditions such as the absence of sunlight, high temperatures and hydrostatic pressures, and elevated concentrations of hydrogen sulfide, as well as high concentrations of heavy metals. Therefore, this biome is different from any other environment on modern Earth. As expected from such conditions, chemoautotrophic prokaryotes are the leading primary producers at the base of the food web considered as an analog to the oldest signs of life on Earth. Herein, we discuss prokaryotic diversity and community structure from the newly discovered hydrothermal systems in the Alarcón Rise (AR), the Pescadero Basin (PB), and the Pescadero Transform Fault (PTF) at the mouth of the Gulf of California, Mexico, using 16S rRNA gene amplicon Illumina sequencing. Despite the spatial proximity of the studied vent systems (<100 km), they differ considerably in their physical, chemical, geological settings, and biotic characteristics. Our results indicated that beta prokaryotic diversity is associated to the sampling source, suggesting a strong effect of environmental conditions in shaping microbial distribution. The most abundant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, and Epsilonbacteraeota. Also, we found evidence on the oxidation of methane as a prevalent process in PB and PTF, since methylotrophic bacteria and Atribacteria were abundant, in contrast to AR basalt-hosted system. Bacteria associated with the sulfur cycle, in particular sulfur compounds reducing and sulfur compounds oxidizing bacteria predominated in all samples, confirming the importance of sulfur supporting vent communities. It is possible that vent systems played a significant role in the origins of life on Earth. Hence, they represent useful models when searching for life elsewhere in the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

This work was supported by SEP- Ciencia Básica CONACyT Grant 238245 and Pappit-DGPA grant IG200319. We want to thank Dr. Erika Aguirre Planter for technical support. We are grateful to the Monterey Bay Aquarium Research Institute and especially to R. Vrijenhoek for his invaluable assistance in obtaining the samples herein analyzed, and for his unyielding support. A special word of appreciation to the Western Flyer crew and the ROV Doc Ricketts pilots for their invaluable help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Espinosa-Asuar or Patricia Velez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Espinosa-Asuar, L. et al. (2020). Bacterial Communities from Deep Hydrothermal Systems: The Southern Gulf of California as an Example of Primeval Environments. In: Souza, V., Segura, A., Foster, J. (eds) Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth. Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis. Springer, Cham. https://doi.org/10.1007/978-3-030-46087-7_7

Download citation

Publish with us

Policies and ethics