Cognitive Abilities and Financial Decision Making



In this chapter, we discuss the role of cognitive abilities in financial decision making. First, we present the Cattell–Horn–Carroll theory of cognitive abilities. This umbrella taxonomy integrates two important models: Cattell–Horn’s model of fluid and crystallized intelligence and Carroll’s Three-Stratum Theory. We focus mostly on the Gf (fluid intelligence) and Gc (crystallized intelligence) and their relationships with financial decision making. Next, we briefly describe Skilled Decision Theory and we present the construct of statistical numeracy: its relationships with financial outcomes (such as personal wealth) and basic mechanisms that underlie the superior performance of people with high statistical numeracy. Moreover, we also describe the multiple numeric competencies (objective numeracy, approximate numeracy, and subjective numeracy) framework. Finally, we present current research on the development and validation of methods (such as cognitive training, education, decision aids) intended to enhance cognitive abilities or help people with lower cognitive abilities to make better financial decisions.



This work was supported by the National Science Centre, Poland [grant number 2018/31/D/HS6/02899].


  1. Allan, J. N. (2018). Numeracy vs. Intelligence: A model of the relationship between cognitive abilities and decision making. University of Oklahoma. Retrieved from
  2. Ancker, J. S., Senathirajah, Y., Kukafka, R., & Starren, J. B. (2006). Design features of graphs in health risk communication: A systematic review. Journal of the American Medical Informatics Association, 13(6), 608–618.PubMedPubMedCentralGoogle Scholar
  3. Arunachalam, V., Pei, B. K. W., & Steinbart, P. J. (2002). Impression management with graphs: Effects on choices. Journal of Information Systems, 16(2), 183–202.Google Scholar
  4. Ashby, N. J. S. (2017). Numeracy predicts preference consistency: Deliberative search heuristics increase choice consistency for choices from description and experience. Judgment and Decision making, 12(2), 128–139.Google Scholar
  5. Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin and Review, 22(2), 366–377.PubMedGoogle Scholar
  6. Bertua, C., Anderson, N., & Salgado, J. F. (2005). The predictive validity of cognitive ability tests: A UK meta-analysis. Journal of Occupational and Organizational Psychology, 78(3), 387–409.Google Scholar
  7. Białek, M., & Sawicki, P. (2018). Cognitive reflection effects on time discounting. Journal of Individual Differences, 39(2), 99–106.Google Scholar
  8. Bruine de Bruin, W., Parker, A. M., & Fischhoff, B. (2020). Decision-Making Competence: More Than Intelligence? Current Directions in Psychological Science, 29(2), 186–192.Google Scholar
  9. Bruine de Bruin, W., Parker, A. M., & Fischhoff, B. (2007). Individual differences in adult decision-making competence. Journal of Personality and Social Psychology, 92(5), 938–956.PubMedGoogle Scholar
  10. Calvin, C. M., Batty, G. D., Der, G., Brett, C. E., Taylor, A., Pattie, A., … Deary, I. J. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: Prospective population study. BMJ, 357, j2708.PubMedPubMedCentralGoogle Scholar
  11. Campbell, J. I. D. (Ed.). (2005). Handbook of mathematical cognition. New York, NY: Taylor & Francis Group.Google Scholar
  12. Chesney, D., Bjälkebring, P., & Peters, E. (2015). How to estimate how well people estimate: Evaluating measures of individual differences in the approximate number system. Attention, Perception, and Psychophysics, 77(8), 2781–2802.Google Scholar
  13. Cokely, E. T., Feltz, A., Ghazal, S., Allan, J. N., Petrova, D. G., & Garcia-Retamero, R. (2018). Decision making skill: From intelligence to numeracy and expertise. In K. A. Ericsson, R. R. Hoffman, A. Kozbelt, & A. M. Williams (Eds.), Cambridge handbook of expertise and expert performance (2nd ed., pp. 476–505). New York, NY: Cambridge University Press.Google Scholar
  14. Cokely, E. T., Galesic, M., Schult, E., & Garcia-Retamero, R. (2012). Measuring risk literacy: The Berlin numeracy test. Judgment and Decision making, 7(1), 25–47.Google Scholar
  15. Cokely, E. T., & Kelley, C. M. (2009). Cognitive abilities and superior decision making under risk: A protocol analysis and process model evaluation. Judgment and Decision making, 4(1), 20–33.Google Scholar
  16. Cooper, R. J., Schriger, D. L., Wallace, R. C., Mikulich, V. J., & Wilkes, M. S. (2003). The quantity and quality of scientific graphs in pharmaceutical advertisements. Journal of General Internal Medicine, 18(4), 294–297.PubMedPubMedCentralGoogle Scholar
  17. Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford, England: Oxford University Press.Google Scholar
  18. Deneve, K. M., & Copper, H. (1998). The happy personality: A meta-analysis of 137 personality traits and subjective well-being. Psychological Bulletin, 124(2), 197–229. Retrieved from Scholar
  19. Dolan, J. G., Cherkasky, O. A., Li, Q., Chin, N., & Veazie, P. J. (2016). Should health numeracy be assessed objectively or subjectively? Medical Decision Making, 36(7), 868–875.PubMedGoogle Scholar
  20. Edwards, A. (2002). Explaining risks: Turning numerical data into meaningful pictures. BMJ, 324(7341), 827–830.PubMedPubMedCentralGoogle Scholar
  21. Estrada-Mejia, C., de Vries, M., & Zeelenberg, M. (2016). Numeracy and wealth. Journal of Economic Psychology, 54(1), 53–63.Google Scholar
  22. Estrada-Mejia, C., Peters, E., Dieckmann, N. F., Zeelenberg, M., de Vries, M., & Baker, D. P. (2020). Schooling, numeracy, and wealth accumulation: A study involving an agrarian population. Journal of Consumer Affairs.Google Scholar
  23. Fagerlin, A., Zikmund-Fisher, B. J., Ubel, P. A., Jankovic, A., Derry, H. A., & Smith, D. M. (2007). Measuring numeracy without a math test: Development of the subjective numeracy scale. Medical Decision Making, 27(5), 672–680.PubMedGoogle Scholar
  24. Feigenson, L., Libertus, M. E., & Halberda, J. (2014). Links between the intuitive sense of number and formal mathematics. Child Development Perspectives, 7(2), 74–79.Google Scholar
  25. Galesic, M., & Garcia-Retamero, R. (2013). Using analogies to communicate information about health risks. Applied Cognitive Psychology, 27(1), 33–42.Google Scholar
  26. Garcia-Retamero, R., & Cokely, E. T. (2013). Communicating health risks with visual aids. Current Directions in Psychological Science, 22(5), 392–399.Google Scholar
  27. Garcia-Retamero, R., & Cokely, E. T. (2014). Using visual aids to help people with low numeracy make better decisions. In B. L. Anderson & J. Schulkin (Eds.), Numerical reasoning in judgments and decision making about health (pp. 153–174). Cambridge, UK: Cambridge University Press.Google Scholar
  28. Garcia-Retamero, R., & Cokely, E. T. (2017). Designing visual aids that promote risk literacy: A systematic review of health research and evidence-based design heuristics. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(4), 582–627.Google Scholar
  29. Garcia-Retamero, R., Sobkow, A., Petrova, D. G., Garrido, D., & Traczyk, J. (2019). Numeracy and risk literacy: What have we learned so far? Spanish Journal of Psychology, e10, 1–11.Google Scholar
  30. Ghazal, S., Cokely, E. T., & Garcia-Retamero, R. (2014). Predicting biases in very highly educated samples: Numeracy and metacognition. Judgment and Decision making, 9(1), 15–34.Google Scholar
  31. Hildon, Z., Allwood, D., & Black, N. (2012). Impact of format and content of visual display of data on comprehension, choice and preference: A systematic review. International Journal for Quality in Health Care, 24(1), 55–64.PubMedGoogle Scholar
  32. Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247.PubMedGoogle Scholar
  33. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833.PubMedPubMedCentralGoogle Scholar
  34. Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y. F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning - implications for training and transfer. Intelligence, 38(6), 625–635.Google Scholar
  35. Jasper, J. D., Bhattacharya, C., & Corser, R. (2017). Numeracy predicts more effortful and elaborative search strategies in a complex risky choice context: A process-tracing approach. Journal of Behavioral Decision Making, 30(2), 224–235.Google Scholar
  36. Juanchich, M., Dewberry, C., Sirota, M., & Narendran, S. (2016). Cognitive reflection predicts real-life decision outcomes, but not over and above personality and decision-making styles. Journal of Behavioral Decision Making, 59, 52–59.Google Scholar
  37. Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782–795.PubMedGoogle Scholar
  38. Liberali, J. M., Reyna, V. F., Furlan, S., Stein, L. M., & Pardo, S. T. (2012). Individual differences in numeracy and cognitive reflection, with implications for biases and fallacies in probability judgment. Journal of Behavioral Decision Making, 25(4), 361–381.PubMedGoogle Scholar
  39. Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2016). The precision of mapping between number words and the approximate number system predicts children’s formal math abilities. Journal of Experimental Child Psychology, 150, 207–226.PubMedPubMedCentralGoogle Scholar
  40. Lipkus, I. M. (2007). Numeric, verbal, and visual formats of conveying health risks: Suggested best practices and future recommendations. Medical Decision Making, 27(5), 696–713.PubMedGoogle Scholar
  41. Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy scale among highly educated samples. Medical Decision Making, 21(1), 37–44.PubMedGoogle Scholar
  42. Lusardi, A. (2012). Numeracy, financial literacy, and financial decision-making. Numeracy, 5(1), 1–12.Google Scholar
  43. Lusardi, A., & Mitchell, O. S. (2014). The economic importance of financial literacy: Theory and evidence. Journal of Economic Literature, 52(1), 5–44.PubMedPubMedCentralGoogle Scholar
  44. Lusardi, A., Samek, A., Kapteyn, A., Glinert, L., Hung, A., & Heinberg, A. (2017). Visual tools and narratives: New ways to improve financial literacy. Journal of Pension Economics and Finance, 16(3), 297–323.Google Scholar
  45. McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10.Google Scholar
  46. Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291.PubMedGoogle Scholar
  47. Mueller, S. M., Schiebener, J., Delazer, M., & Brand, M. (2018). Risk approximation in decision making: Approximative numeric abilities predict advantageous decisions under objective risk. Cognitive Processing, 19, 1–19.Google Scholar
  48. Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55(3), 169–195.PubMedGoogle Scholar
  49. Paling, J. (2003). Strategies to help patients understand risks. BMJ, 327(7417), 745–748.PubMedPubMedCentralGoogle Scholar
  50. Park, I., & Cho, S. (2018). The influence of number line estimation precision and numeracy on risky financial decision making. International Journal of Psychology, 54, 530.PubMedGoogle Scholar
  51. Peters, E. (2012). Beyond comprehension: The role of numeracy in judgments and decisions. Current Directions in Psychological Science, 21(1), 31–35.Google Scholar
  52. Peters, E., & Bjälkebring, P. (2015). Multiple numeric competencies: When a number is not just a number. Journal of Personality and Social Psychology, 108(5), 802–822.PubMedGoogle Scholar
  53. Peters, E., Shoots-Reinhard, B., Tompkins, M. K., Schley, D., Meilleur, L., Sinayev, A., … Crocker, J. (2017). Improving numeracy through values affirmation enhances decision and STEM outcomes. PLoS One, 12(7), e0180674.PubMedPubMedCentralGoogle Scholar
  54. Peters, E., Slovic, P., Västfjäll, D., & Mertz, C. (2008). Intuitive numbers guide decisions. Judgment and Decision making, 3(8), 619–635.Google Scholar
  55. Peters, E., Tompkins, M. K., Knoll, M. A. Z., Ardoin, S. P., Shoots-Reinhard, B., & Meara, A. S. (2019). Despite high objective numeracy, lower numeric confidence relates to worse financial and medical outcomes. Proceedings of the National Academy of Sciences, 116(39), 19386–19391.Google Scholar
  56. Petrova, D. G., Traczyk, J., & Garcia-Retamero, R. (2019). What shapes the probability weighting function? Influence of affect, numeric competencies, and information formats. Journal of Behavioral Decision Making, 32(2), 124–139.Google Scholar
  57. Petrova, D. G., van der Pligt, J., & Garcia-Retamero, R. (2014). Feeling the numbers: On the interplay between risk, affect, and numeracy. Journal of Behavioral Decision Making, 27(3), 191–199.Google Scholar
  58. Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How numeracy influences risk comprehension and medical decision making. Psychological Bulletin, 135(6), 943–973.PubMedPubMedCentralGoogle Scholar
  59. Ritchie, S. J., & Tucker-Drob, E. M. (2018). How much does education improve intelligence? A meta-analysis. Psychological Science, 29(8), 1358–1369.PubMedPubMedCentralGoogle Scholar
  60. Rudolph, S., Savikhin, A., & Ebert, D. S. (2009). FinVis: Applied visual analytics for personal financial planning. VAST 09 - IEEE Symposium on Visual Analytics Science and Technology, Proceedings, 195–202.Google Scholar
  61. Sajid, M., & Li, M. C. (2019). The role of cognitive reflection in decision making: Evidence from Pakistani managers. Judgment and Decision making, 14(5), 591–604.Google Scholar
  62. Savikhin, A. C. (2012). The application of visual analytics to financial decision-making and risk management: Notes from behavioral economics. In V. Lemieux (Ed.), Financial analysis and risk management: Data governance, analytics and life cycle management (pp. 99–114). Berlin/Heidelberg: Springer.Google Scholar
  63. Schley, D. R., & Peters, E. (2014). Assessing “economic value”: Symbolic-number mappings predict risky and riskless valuations. Psychological Science, 25(3), 753–761.PubMedGoogle Scholar
  64. Schwartz, L. M., Woloshin, S., Black, W. C., & Welch, H. G. (1997). The role of numeracy in understanding the benefit of screening mammography. Annals of Internal Medicine, 127(11), 966–972.PubMedGoogle Scholar
  65. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–243.PubMedGoogle Scholar
  66. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186.PubMedGoogle Scholar
  67. Sinayev, A., & Peters, E. (2015). Cognitive reflection vs. calculation in decision making. Frontiers in Psychology, 6, 532.PubMedPubMedCentralGoogle Scholar
  68. Sirota, M., & Juanchich, M. (2018). Effect of response format on cognitive reflection: Validating a two- and four-option multiple choice question version of the cognitive reflection test. Behavior Research Methods, 50(6), 2511–2522.PubMedGoogle Scholar
  69. Skagerlund, K., Lind, T., Strömbäck, C., Tinghög, G., & Västfjäll, D. (2018). Financial literacy and the role of numeracy – How individuals’ attitude and affinity with numbers influence financial literacy. Journal of Behavioral and Experimental Economics, 74, 18–25.Google Scholar
  70. Sobkow, A., Fulawka, K., Tomczak, P., Zjawiony, P., & Traczyk, J. (2019). Does mental number line training work? The effects of cognitive training on real-life mathematics, numeracy, and decision making. Journal of Experimental Psychology: Applied, 25(3), 372–385.PubMedGoogle Scholar
  71. Sobkow, A., Olszewska, A., & Traczyk, J. (2020). Multiple numeric competencies predict decision outcomes beyond fluid intelligence and cognitive reflection. Intelligence, 80, 101452.Google Scholar
  72. Spiegelhalter, D., Pearson, M., & Short, I. (2011). Visualizing uncertainty about the future. Science, 333(6048), 1393–1400.PubMedGoogle Scholar
  73. Stanovich, K. E., West, R. F., & Toplak, M. E. (2011). Intelligence and rationality. In R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 784–826). New York, NY: Cambridge University Press.Google Scholar
  74. Strenze, T. (2007). Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. Intelligence, 35(5), 401–426.Google Scholar
  75. Strenze, T. (2015). Intelligence and success. In S. Goldstein, D. Princiotta, & J. A. Naglieri (Eds.), Handbook of intelligence: Evolutionary theory, historical perspective, and current concepts (pp. 405–413). New York, NY: Springer.Google Scholar
  76. Teovanović, P., Knežević, G., & Stankov, L. (2015). Individual differences in cognitive biases: Evidence against one-factor theory of rationality. Intelligence, 50, 750–786.Google Scholar
  77. Toplak, M. E., West, R. F., & Stanovich, K. E. (2011). The cognitive reflection test as a predictor of performance on heuristics-and-biases tasks. Memory & Cognition, 39(7), 1275–1289.Google Scholar
  78. Toplak, M. E., West, R. F., & Stanovich, K. E. (2014). Assessing miserly information processing: An expansion of the cognitive reflection test. Thinking and Reasoning, 20(2), 147–168.Google Scholar
  79. Toplak, M. E., West, R. F., & Stanovich, K. E. (2017). Real-world correlates of performance on heuristics and biases tasks in a community sample. Journal of Behavioral Decision Making, 30(2), 541–554.Google Scholar
  80. Traczyk, J., & Fulawka, K. (2016). Numeracy moderates the influence of task-irrelevant affect on probability weighting. Cognition, 151, 37–41.PubMedGoogle Scholar
  81. Traczyk, J., Lenda, D., Serek, J., Fulawka, K., Tomczak, P., Strizyk, K., … Sobkow, A. (2018a). Does fear increase search effort in more numerate people? An experimental study investigating information acquisition in a decision from experience task. Frontiers in Psychology, 9, 1203.PubMedPubMedCentralGoogle Scholar
  82. Traczyk, J., Sobkow, A., Fulawka, K., Kus, J., Petrova, D. G., & Garcia-Retamero, R. (2018b). Numerate decision makers don’t use more effortful strategies unless it pays: A process tracing investigation of skilled and adaptive strategy selection in risky decision making. Judgment and Decision making, 13(4), 372–381.Google Scholar
  83. Weller, J. A., Dieckmann, N. F., Tusler, M., Mertz, C. K., Burns, W. J., & Peters, E. (2013). Development and testing of an abbreviated numeracy scale: A Rasch analysis approach. Journal of Behavioral Decision Making, 26(2), 198–212.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Research on Improving Decision Making (CRIDM)SWPS University of Social Sciences and HumanitiesWroclawPoland
  2. 2.Department of PsychologyUniversity of Castilla-La ManchaCiudad RealSpain
  3. 3.Mind, Brain, and Behavior Research Center (CIMCYC), University of GranadaGranadaSpain
  4. 4.Harding Center for Risk Literacy, Max Planck Institute for Human DevelopmentBerlinGermany

Personalised recommendations