Skip to main content

Cognitive Abilities and Financial Decision Making

  • Chapter
  • First Online:
Psychological Perspectives on Financial Decision Making

Abstract

In this chapter, we discuss the role of cognitive abilities in financial decision making. First, we present the Cattell–Horn–Carroll theory of cognitive abilities. This umbrella taxonomy integrates two important models: Cattell–Horn’s model of fluid and crystallized intelligence and Carroll’s Three-Stratum Theory. We focus mostly on the Gf (fluid intelligence) and Gc (crystallized intelligence) and their relationships with financial decision making. Next, we briefly describe Skilled Decision Theory and we present the construct of statistical numeracy: its relationships with financial outcomes (such as personal wealth) and basic mechanisms that underlie the superior performance of people with high statistical numeracy. Moreover, we also describe the multiple numeric competencies (objective numeracy, approximate numeracy, and subjective numeracy) framework. Finally, we present current research on the development and validation of methods (such as cognitive training, education, decision aids) intended to enhance cognitive abilities or help people with lower cognitive abilities to make better financial decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the term statistical numeracy to refer to the concept proposed by Cokely et al. (Cokely, Galesic, Schult, & Garcia-Retamero, 2012) and measured by the Berlin Numeracy Test (sample item: “Imagine we are throwing a five-sided die 50 times. On average, out of these 50 throws how many times would this five-sided die show an odd number (1, 3 or 5)? ________ out of 50 throws.”). We also use the terms numeracy or objective numeracy more broadly to refer to numeracy as measured by other similar cognitive ability tests (Lipkus et al., 2001; Schwartz, Woloshin, Black, & Welch, 1997; Weller et al., 2013).

  2. 2.

    For more information about the role of emotions in financial decision making, see Chap. 6 of this Handbook.

  3. 3.

    For more information about financial literacy, see studies by Lusardi et al. (Lusardi, 2012; Lusardi & Mitchell, 2014) or Chap. 5 of this Handbook.

  4. 4.

    This thinking disposition captures whether people are prone to inhibit the first (“intuitive”) incorrect response and follow a correct (“reflective”) solution. It is usually measured by a brief set of puzzles, e.g., “A baseball bat and a ball cost $1.10 together, and the bat costs $1.00 more than the ball, how much does the ball cost?” (correct answer: 5 cents). Research shows that performance on similar tasks was related to various outcomes, such as risk and time preferences (Białek & Sawicki, 2018; Sajid & Li, 2019), susceptibility to cognitive biases (Sirota & Juanchich, 2018; Teovanović, Knežević, & Stankov, 2015; Toplak, West, & Stanovich, 2011, 2014, 2017), and experiencing negative decision outcomes in real life (Juanchich, Dewberry, Sirota, & Narendran, 2016).

References

  • Allan, J. N. (2018). Numeracy vs. Intelligence: A model of the relationship between cognitive abilities and decision making. University of Oklahoma. Retrieved from https://shareok.org/handle/11244/299906

  • Ancker, J. S., Senathirajah, Y., Kukafka, R., & Starren, J. B. (2006). Design features of graphs in health risk communication: A systematic review. Journal of the American Medical Informatics Association, 13(6), 608–618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arunachalam, V., Pei, B. K. W., & Steinbart, P. J. (2002). Impression management with graphs: Effects on choices. Journal of Information Systems, 16(2), 183–202.

    Article  Google Scholar 

  • Ashby, N. J. S. (2017). Numeracy predicts preference consistency: Deliberative search heuristics increase choice consistency for choices from description and experience. Judgment and Decision making, 12(2), 128–139.

    Google Scholar 

  • Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin and Review, 22(2), 366–377.

    Article  PubMed  Google Scholar 

  • Bertua, C., Anderson, N., & Salgado, J. F. (2005). The predictive validity of cognitive ability tests: A UK meta-analysis. Journal of Occupational and Organizational Psychology, 78(3), 387–409.

    Article  Google Scholar 

  • Białek, M., & Sawicki, P. (2018). Cognitive reflection effects on time discounting. Journal of Individual Differences, 39(2), 99–106.

    Article  Google Scholar 

  • Bruine de Bruin, W., Parker, A. M., & Fischhoff, B. (2020). Decision-Making Competence: More Than Intelligence? Current Directions in Psychological Science, 29(2), 186–192.

    Google Scholar 

  • Bruine de Bruin, W., Parker, A. M., & Fischhoff, B. (2007). Individual differences in adult decision-making competence. Journal of Personality and Social Psychology, 92(5), 938–956.

    Article  PubMed  Google Scholar 

  • Calvin, C. M., Batty, G. D., Der, G., Brett, C. E., Taylor, A., Pattie, A., … Deary, I. J. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: Prospective population study. BMJ, 357, j2708.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell, J. I. D. (Ed.). (2005). Handbook of mathematical cognition. New York, NY: Taylor & Francis Group.

    Google Scholar 

  • Chesney, D., Bjälkebring, P., & Peters, E. (2015). How to estimate how well people estimate: Evaluating measures of individual differences in the approximate number system. Attention, Perception, and Psychophysics, 77(8), 2781–2802.

    Article  Google Scholar 

  • Cokely, E. T., Feltz, A., Ghazal, S., Allan, J. N., Petrova, D. G., & Garcia-Retamero, R. (2018). Decision making skill: From intelligence to numeracy and expertise. In K. A. Ericsson, R. R. Hoffman, A. Kozbelt, & A. M. Williams (Eds.), Cambridge handbook of expertise and expert performance (2nd ed., pp. 476–505). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Cokely, E. T., Galesic, M., Schult, E., & Garcia-Retamero, R. (2012). Measuring risk literacy: The Berlin numeracy test. Judgment and Decision making, 7(1), 25–47.

    Google Scholar 

  • Cokely, E. T., & Kelley, C. M. (2009). Cognitive abilities and superior decision making under risk: A protocol analysis and process model evaluation. Judgment and Decision making, 4(1), 20–33.

    Google Scholar 

  • Cooper, R. J., Schriger, D. L., Wallace, R. C., Mikulich, V. J., & Wilkes, M. S. (2003). The quantity and quality of scientific graphs in pharmaceutical advertisements. Journal of General Internal Medicine, 18(4), 294–297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford, England: Oxford University Press.

    Google Scholar 

  • Deneve, K. M., & Copper, H. (1998). The happy personality: A meta-analysis of 137 personality traits and subjective well-being. Psychological Bulletin, 124(2), 197–229. Retrieved from https://www.gwern.net/docs/iq/1998-deneve.pdf

    Article  PubMed  Google Scholar 

  • Dolan, J. G., Cherkasky, O. A., Li, Q., Chin, N., & Veazie, P. J. (2016). Should health numeracy be assessed objectively or subjectively? Medical Decision Making, 36(7), 868–875.

    Article  PubMed  Google Scholar 

  • Edwards, A. (2002). Explaining risks: Turning numerical data into meaningful pictures. BMJ, 324(7341), 827–830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada-Mejia, C., de Vries, M., & Zeelenberg, M. (2016). Numeracy and wealth. Journal of Economic Psychology, 54(1), 53–63.

    Article  Google Scholar 

  • Estrada-Mejia, C., Peters, E., Dieckmann, N. F., Zeelenberg, M., de Vries, M., & Baker, D. P. (2020). Schooling, numeracy, and wealth accumulation: A study involving an agrarian population. Journal of Consumer Affairs.

    Google Scholar 

  • Fagerlin, A., Zikmund-Fisher, B. J., Ubel, P. A., Jankovic, A., Derry, H. A., & Smith, D. M. (2007). Measuring numeracy without a math test: Development of the subjective numeracy scale. Medical Decision Making, 27(5), 672–680.

    Article  PubMed  Google Scholar 

  • Feigenson, L., Libertus, M. E., & Halberda, J. (2014). Links between the intuitive sense of number and formal mathematics. Child Development Perspectives, 7(2), 74–79.

    Article  Google Scholar 

  • Galesic, M., & Garcia-Retamero, R. (2013). Using analogies to communicate information about health risks. Applied Cognitive Psychology, 27(1), 33–42.

    Article  Google Scholar 

  • Garcia-Retamero, R., & Cokely, E. T. (2013). Communicating health risks with visual aids. Current Directions in Psychological Science, 22(5), 392–399.

    Article  Google Scholar 

  • Garcia-Retamero, R., & Cokely, E. T. (2014). Using visual aids to help people with low numeracy make better decisions. In B. L. Anderson & J. Schulkin (Eds.), Numerical reasoning in judgments and decision making about health (pp. 153–174). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Garcia-Retamero, R., & Cokely, E. T. (2017). Designing visual aids that promote risk literacy: A systematic review of health research and evidence-based design heuristics. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(4), 582–627.

    Article  Google Scholar 

  • Garcia-Retamero, R., Sobkow, A., Petrova, D. G., Garrido, D., & Traczyk, J. (2019). Numeracy and risk literacy: What have we learned so far? Spanish Journal of Psychology, e10, 1–11.

    Google Scholar 

  • Ghazal, S., Cokely, E. T., & Garcia-Retamero, R. (2014). Predicting biases in very highly educated samples: Numeracy and metacognition. Judgment and Decision making, 9(1), 15–34.

    Google Scholar 

  • Hildon, Z., Allwood, D., & Black, N. (2012). Impact of format and content of visual display of data on comprehension, choice and preference: A systematic review. International Journal for Quality in Health Care, 24(1), 55–64.

    Article  PubMed  Google Scholar 

  • Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y. F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning - implications for training and transfer. Intelligence, 38(6), 625–635.

    Article  Google Scholar 

  • Jasper, J. D., Bhattacharya, C., & Corser, R. (2017). Numeracy predicts more effortful and elaborative search strategies in a complex risky choice context: A process-tracing approach. Journal of Behavioral Decision Making, 30(2), 224–235.

    Article  Google Scholar 

  • Juanchich, M., Dewberry, C., Sirota, M., & Narendran, S. (2016). Cognitive reflection predicts real-life decision outcomes, but not over and above personality and decision-making styles. Journal of Behavioral Decision Making, 59, 52–59.

    Article  Google Scholar 

  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782–795.

    Article  PubMed  Google Scholar 

  • Liberali, J. M., Reyna, V. F., Furlan, S., Stein, L. M., & Pardo, S. T. (2012). Individual differences in numeracy and cognitive reflection, with implications for biases and fallacies in probability judgment. Journal of Behavioral Decision Making, 25(4), 361–381.

    Article  PubMed  Google Scholar 

  • Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2016). The precision of mapping between number words and the approximate number system predicts children’s formal math abilities. Journal of Experimental Child Psychology, 150, 207–226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipkus, I. M. (2007). Numeric, verbal, and visual formats of conveying health risks: Suggested best practices and future recommendations. Medical Decision Making, 27(5), 696–713.

    Article  PubMed  Google Scholar 

  • Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy scale among highly educated samples. Medical Decision Making, 21(1), 37–44.

    Article  PubMed  Google Scholar 

  • Lusardi, A. (2012). Numeracy, financial literacy, and financial decision-making. Numeracy, 5(1), 1–12.

    Article  Google Scholar 

  • Lusardi, A., & Mitchell, O. S. (2014). The economic importance of financial literacy: Theory and evidence. Journal of Economic Literature, 52(1), 5–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lusardi, A., Samek, A., Kapteyn, A., Glinert, L., Hung, A., & Heinberg, A. (2017). Visual tools and narratives: New ways to improve financial literacy. Journal of Pension Economics and Finance, 16(3), 297–323.

    Article  Google Scholar 

  • McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10.

    Article  Google Scholar 

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291.

    Article  PubMed  Google Scholar 

  • Mueller, S. M., Schiebener, J., Delazer, M., & Brand, M. (2018). Risk approximation in decision making: Approximative numeric abilities predict advantageous decisions under objective risk. Cognitive Processing, 19, 1–19.

    Article  Google Scholar 

  • Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55(3), 169–195.

    Article  PubMed  Google Scholar 

  • Paling, J. (2003). Strategies to help patients understand risks. BMJ, 327(7417), 745–748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, I., & Cho, S. (2018). The influence of number line estimation precision and numeracy on risky financial decision making. International Journal of Psychology, 54, 530.

    Article  PubMed  Google Scholar 

  • Peters, E. (2012). Beyond comprehension: The role of numeracy in judgments and decisions. Current Directions in Psychological Science, 21(1), 31–35.

    Article  Google Scholar 

  • Peters, E., & Bjälkebring, P. (2015). Multiple numeric competencies: When a number is not just a number. Journal of Personality and Social Psychology, 108(5), 802–822.

    Article  PubMed  Google Scholar 

  • Peters, E., Shoots-Reinhard, B., Tompkins, M. K., Schley, D., Meilleur, L., Sinayev, A., … Crocker, J. (2017). Improving numeracy through values affirmation enhances decision and STEM outcomes. PLoS One, 12(7), e0180674.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters, E., Slovic, P., Västfjäll, D., & Mertz, C. (2008). Intuitive numbers guide decisions. Judgment and Decision making, 3(8), 619–635.

    Google Scholar 

  • Peters, E., Tompkins, M. K., Knoll, M. A. Z., Ardoin, S. P., Shoots-Reinhard, B., & Meara, A. S. (2019). Despite high objective numeracy, lower numeric confidence relates to worse financial and medical outcomes. Proceedings of the National Academy of Sciences, 116(39), 19386–19391.

    Article  Google Scholar 

  • Petrova, D. G., Traczyk, J., & Garcia-Retamero, R. (2019). What shapes the probability weighting function? Influence of affect, numeric competencies, and information formats. Journal of Behavioral Decision Making, 32(2), 124–139.

    Article  Google Scholar 

  • Petrova, D. G., van der Pligt, J., & Garcia-Retamero, R. (2014). Feeling the numbers: On the interplay between risk, affect, and numeracy. Journal of Behavioral Decision Making, 27(3), 191–199.

    Article  Google Scholar 

  • Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How numeracy influences risk comprehension and medical decision making. Psychological Bulletin, 135(6), 943–973.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie, S. J., & Tucker-Drob, E. M. (2018). How much does education improve intelligence? A meta-analysis. Psychological Science, 29(8), 1358–1369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph, S., Savikhin, A., & Ebert, D. S. (2009). FinVis: Applied visual analytics for personal financial planning. VAST 09 - IEEE Symposium on Visual Analytics Science and Technology, Proceedings, 195–202.

    Google Scholar 

  • Sajid, M., & Li, M. C. (2019). The role of cognitive reflection in decision making: Evidence from Pakistani managers. Judgment and Decision making, 14(5), 591–604.

    Google Scholar 

  • Savikhin, A. C. (2012). The application of visual analytics to financial decision-making and risk management: Notes from behavioral economics. In V. Lemieux (Ed.), Financial analysis and risk management: Data governance, analytics and life cycle management (pp. 99–114). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Schley, D. R., & Peters, E. (2014). Assessing “economic value”: Symbolic-number mappings predict risky and riskless valuations. Psychological Science, 25(3), 753–761.

    Article  PubMed  Google Scholar 

  • Schwartz, L. M., Woloshin, S., Black, W. C., & Welch, H. G. (1997). The role of numeracy in understanding the benefit of screening mammography. Annals of Internal Medicine, 127(11), 966–972.

    Article  PubMed  Google Scholar 

  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–243.

    Article  PubMed  Google Scholar 

  • Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186.

    Article  PubMed  Google Scholar 

  • Sinayev, A., & Peters, E. (2015). Cognitive reflection vs. calculation in decision making. Frontiers in Psychology, 6, 532.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirota, M., & Juanchich, M. (2018). Effect of response format on cognitive reflection: Validating a two- and four-option multiple choice question version of the cognitive reflection test. Behavior Research Methods, 50(6), 2511–2522.

    Article  PubMed  Google Scholar 

  • Skagerlund, K., Lind, T., Strömbäck, C., Tinghög, G., & Västfjäll, D. (2018). Financial literacy and the role of numeracy – How individuals’ attitude and affinity with numbers influence financial literacy. Journal of Behavioral and Experimental Economics, 74, 18–25.

    Article  Google Scholar 

  • Sobkow, A., Fulawka, K., Tomczak, P., Zjawiony, P., & Traczyk, J. (2019). Does mental number line training work? The effects of cognitive training on real-life mathematics, numeracy, and decision making. Journal of Experimental Psychology: Applied, 25(3), 372–385.

    PubMed  Google Scholar 

  • Sobkow, A., Olszewska, A., & Traczyk, J. (2020). Multiple numeric competencies predict decision outcomes beyond fluid intelligence and cognitive reflection. Intelligence, 80, 101452.

    Google Scholar 

  • Spiegelhalter, D., Pearson, M., & Short, I. (2011). Visualizing uncertainty about the future. Science, 333(6048), 1393–1400.

    Article  PubMed  Google Scholar 

  • Stanovich, K. E., West, R. F., & Toplak, M. E. (2011). Intelligence and rationality. In R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 784–826). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Strenze, T. (2007). Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. Intelligence, 35(5), 401–426.

    Article  Google Scholar 

  • Strenze, T. (2015). Intelligence and success. In S. Goldstein, D. Princiotta, & J. A. Naglieri (Eds.), Handbook of intelligence: Evolutionary theory, historical perspective, and current concepts (pp. 405–413). New York, NY: Springer.

    Chapter  Google Scholar 

  • Teovanović, P., Knežević, G., & Stankov, L. (2015). Individual differences in cognitive biases: Evidence against one-factor theory of rationality. Intelligence, 50, 750–786.

    Article  Google Scholar 

  • Toplak, M. E., West, R. F., & Stanovich, K. E. (2011). The cognitive reflection test as a predictor of performance on heuristics-and-biases tasks. Memory & Cognition, 39(7), 1275–1289.

    Article  Google Scholar 

  • Toplak, M. E., West, R. F., & Stanovich, K. E. (2014). Assessing miserly information processing: An expansion of the cognitive reflection test. Thinking and Reasoning, 20(2), 147–168.

    Article  Google Scholar 

  • Toplak, M. E., West, R. F., & Stanovich, K. E. (2017). Real-world correlates of performance on heuristics and biases tasks in a community sample. Journal of Behavioral Decision Making, 30(2), 541–554.

    Article  Google Scholar 

  • Traczyk, J., & Fulawka, K. (2016). Numeracy moderates the influence of task-irrelevant affect on probability weighting. Cognition, 151, 37–41.

    Article  PubMed  Google Scholar 

  • Traczyk, J., Lenda, D., Serek, J., Fulawka, K., Tomczak, P., Strizyk, K., … Sobkow, A. (2018a). Does fear increase search effort in more numerate people? An experimental study investigating information acquisition in a decision from experience task. Frontiers in Psychology, 9, 1203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Traczyk, J., Sobkow, A., Fulawka, K., Kus, J., Petrova, D. G., & Garcia-Retamero, R. (2018b). Numerate decision makers don’t use more effortful strategies unless it pays: A process tracing investigation of skilled and adaptive strategy selection in risky decision making. Judgment and Decision making, 13(4), 372–381.

    Google Scholar 

  • Weller, J. A., Dieckmann, N. F., Tusler, M., Mertz, C. K., Burns, W. J., & Peters, E. (2013). Development and testing of an abbreviated numeracy scale: A Rasch analysis approach. Journal of Behavioral Decision Making, 26(2), 198–212.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre, Poland [grant number 2018/31/D/HS6/02899].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Sobkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sobkow, A., Garrido, D., Garcia-Retamero, R. (2020). Cognitive Abilities and Financial Decision Making. In: Zaleskiewicz, T., Traczyk, J. (eds) Psychological Perspectives on Financial Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-030-45500-2_4

Download citation

Publish with us

Policies and ethics