Advertisement

Clustering Reveals Common Check-Point and Growth Factor Receptor Genes Expressed in Six Different Cancer Types

Conference paper
  • 589 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12108)

Abstract

Cancer diagnosis and prognosis has been significantly impacted by understandings of gene expression data analysis. Several groups have utilized supervised and unsupervised machine learning tools for classification and predictions on gene expression data sets. Clustering, principal component analysis, regression are some important and promising tools for analyzing gene expression data. The complex and multi-dimensions of this data with limited samples makes it challenging to understand common patterns. Several features of high dimensional data contributing to a cluster generated by a finite mixture of underlying probability distributions can be implemented with a model-based clustering method. While some groups have shown that projective clustering and ensemble techniques can be effective to combat these challenges, we have employed clustering on 6 different cancer types to address the problem of multi-dimensionality and extracting common gene expression patterns. Our analysis has provided an expression pattern of 42 genes common throughout all cancer types with most of the genes involved in important check-point and growth factor receptor functions associated with cancer pathophysiology.

Keywords

Cancer diagnosis Gene expression Clustering analysis 

References

  1. 1.
    Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzzo, W.L.: Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10), 977–987 (2001).  https://doi.org/10.1093/bioinformatics/17.10.977CrossRefPubMedGoogle Scholar
  2. 2.
    Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., Papadopoulos, D.: Locally adaptive metrics for clustering high dimensional data. Data Min. Knowl. Disc. 14(1), 63–97 (2007).  https://doi.org/10.1007/s10618-006-0060-8CrossRefGoogle Scholar
  3. 3.
    Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor. Newsl. 6(3), 90–105 (2004).  https://doi.org/10.1145/1007730.1007731CrossRefGoogle Scholar
  4. 4.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data. Data Min. Knowl. Disc. 11(1), 5–33 (2005).  https://doi.org/10.1007/s10618-005-1396-1CrossRefGoogle Scholar
  5. 5.
    Gullo, F., Domeniconi, C., Tagarelli, A.: Projective clustering ensembles. Data Min. Knowl. Disc. 26(3), 452–511 (2013).  https://doi.org/10.1007/s10618-012-0266-xCrossRefGoogle Scholar
  6. 6.
    Gao, Y., Yin, J., Tu, Y., Chen, Y.C.: Theaflavin-3,3′-digallate suppresses human ovarian carcinoma OVCAR-3 cells by regulating the checkpoint kinase 2 and p 27 kip1 pathways. Molecules 24(4) (2019).  https://doi.org/10.3390/molecules24040673
  7. 7.
    Hippenmeyer, S., Shneider, N.A., Birchmeier, C., Burden, S.J., Jessell, T.M., Arber, S.: A role for neuregulin 1 signaling in muscle spindle differentiation. Neuron 36, 1035–1049 (2002)CrossRefGoogle Scholar
  8. 8.
    Awakura, Y., Nakamura, E., Ito, N., Kamoto, T., Ogawa, O.: Methylation-associated silencing of TU3A in human cancers. Int. J. Oncol. 33(4), 893–899 (2008)PubMedGoogle Scholar
  9. 9.
    Jacquot, C., et al.: Effect of four genes (ALDH1, NRF1, JAM and KBL) on proliferation arrest in a non-small cell bronchopulmonary cancer line. Anticancer Res. 22(4), 2229–2235 (2002)PubMedGoogle Scholar
  10. 10.
    Silverstein, S., Veerapandiyan, A., Hayes-Rosen, C., Ming, X., Kornitzer, J.: A novel intronic homozygous mutation in the AMT gene of a patient with nonketotic hyperglycinemia and hyperammonemia. Metab. Brain Dis. 34(1), 373–376 (2018).  https://doi.org/10.1007/s11011-018-0317-0CrossRefPubMedGoogle Scholar
  11. 11.
    Wu, Y.H., Chang, T.H., Huang, Y.F., Huang, H.D., Chou, C.Y.: COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 33(26), 3432–3440 (2014).  https://doi.org/10.1038/onc.2013.307CrossRefPubMedGoogle Scholar
  12. 12.
    Lorenzon-Ojea, A.R., Guzzo, C.R., Kapidzic, M., Fisher, S.J., Bevilacqua, E.: Stromal cell-derived factor 2: a novel protein that interferes in endoplasmic reticulum stress pathway in human placental cells. Biol. Reprod. 95(2), 41 (2016)CrossRefGoogle Scholar
  13. 13.
    Qi, S., et al.: YIPF2 is a novel Rab-GDF that enhances HCC malignant phenotypes by facilitating CD147 endocytic recycle. Cell Death Dis. 10, 462 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Yale UniversityNew HavenUSA
  2. 2.University of IowaUI Research ParkIowa CityUSA
  3. 3.Sunway UniversityPetaling JayaMalaysia

Personalised recommendations