Skip to main content

Highly Parallel Convolution Method to Compare DNA Sequences with Enforced In/Del and Mutation Tolerance

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12108))

Abstract

New error tolerant method for the comparison and analysis of symbol sequences is proposed. The method is based on convolution function calculation, where the function is defined over the binary numeric sequences obtained by the specific transformation of original symbol sequence. The method allows highly parallel implementation and is of great value for insertion/delition mutations search. To calculate the convolution function, fast Fourier transform is used in the method implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, there is no difference between insertion and deletion: changing a reference sequence, one always is able to convert the situation to a single mutation, e. g. to insertion.

References

  1. Tsarev, S.P., Sadovsky, M.G.: New error tolerant method for search of long repeats in DNA sequences. In: Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S., Vega-Rodríguez, M.A. (eds.) AlCoB 2016. LNCS, vol. 9702, pp. 171–182. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38827-4_14

    Chapter  Google Scholar 

  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Article  CAS  Google Scholar 

  3. Freschi, V., Bogliolo, A.: A faster algorithm for the computation of string convolutions using lz78 parsing. Inform. Process. Lett. 110(14), 609–613 (2010)

    Article  Google Scholar 

  4. Freschi, V., Bogliolo, A.: Longest common subsequence between run-length-encoded strings: a new algorithm with improved parallelism. Inform. Process. Lett. 90(4), 167–173 (2004)

    Article  Google Scholar 

  5. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  Google Scholar 

  6. Katoh, K., Misawa, K., Kuma, K.I., Miyata, T.: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002)

    Article  CAS  Google Scholar 

  7. Janacek, G.J., Bagnall, A.J., Powell, M.: A likelihood ratio distance measure for the similarity between the Fourier transform of time series. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 737–743. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_85

    Chapter  Google Scholar 

  8. Hetland, M.L.: A survey of recent methods for efficient retrieval of similar time sequences. In: Data Mining in Time Series Databases, pp. 23–42. World Scientific (2004)

    Google Scholar 

  9. Benson, D.C.: Fourier methods for biosequence analysis. Nucleic Acids Res. 18(21), 6305–6310 (1990)

    Article  CAS  Google Scholar 

  10. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms. Pearson Education India, Bengaluru (1974)

    Google Scholar 

  11. Baase, S.: Computer Algorithms: Introduction to Design and Analysis. Pearson Education India, Bengaluru (2009)

    Google Scholar 

  12. Kozen, D.C.: The Design and Analysis of Algorithms. Springer, Heidleberg (2012)

    Google Scholar 

  13. Levenshtein, V.I.: Bounds for deletion/insertion correcting codes. In: Proceedings IEEE International Symposium on Information Theory, p. 370. IEEE (2002)

    Google Scholar 

  14. Merhi, S., Zhang, R., Iwen, M.A., Christlieb, A.: A new class of fully discrete sparse fourier transforms: faster stable implementations with guarantees. J. Fourier Anal. Appl. 25(3), 751–784 (2019)

    Article  Google Scholar 

  15. Karam, C., Sugimoto, K., Hirakawa, K.: Fast convolutional distance transform. IEEE Signal Process. Lett. 26(6), 853–857 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sadovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Molyavko, A., Shaidurov, V., Karepova, E., Sadovsky, M. (2020). Highly Parallel Convolution Method to Compare DNA Sequences with Enforced In/Del and Mutation Tolerance. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics