Advertisement

Basic VNS for the Uncapacitated Single Allocation p-Hub Maximal Covering Problem

  • Matheus de Araujo ButinholiEmail author
  • Alexandre Xavier Martins
  • Paganini Barcellos de Oliveira
  • Diego Perdigão Martino
Conference paper
  • 87 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12010)

Abstract

This paper addresses the Uncapacitated Single Allocation p-hub Maximal Covering Problem (USApHMCP), which aims to determine the best allocation for the p-hubs within a node network in order to maximize the network coverage. We proposed a search strategy-based heuristic Basic Variable Neighborhood Search (VNS) to solve the problem. Two different sets of test instances from the literature, Civil Aeronautics Board (CAB) and Australian Post (AP), were used to evaluate the performance of VNS and to compare it with the Tabu Search (TS) metaheuristic. In most instances, the bounds obtained by VNS and TS were the same but, on the other hand, for some of them, VNS presented a slight advantage and vice versa. That is, both algorithms are convenient to solve the proposed problem.

Keywords

Maximum coverage problem Uncapacitated Single Allocation p-hub Variable Neighborhood Search 

Notes

Acknowledgements

The authors acknowledge the UFOP, Fapemig, CAPES and CNPq for supporting this research.

References

  1. 1.
    Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin, Fakultä II - Mathematik und Naturwissenschaften (2007)Google Scholar
  2. 2.
    Campbell, J.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72(2), 387–405 (1994)CrossRefGoogle Scholar
  3. 3.
    Ernst, T., Krishnamoorthy, M.: Efficient algorithms for the uncapacitated single allocation p-hub median problem. Locat. Sci. 4(3), 139–154 (1996)CrossRefGoogle Scholar
  4. 4.
    Gendreau, M., Potvin, J.-Y.: Tabu search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 37–55. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-91086-4_2CrossRefzbMATHGoogle Scholar
  5. 5.
    Janković, O., Mišković, S., Stanimirović, Z., Todosijević, R.: Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems. Ann. Oper. Res. 259(1–2), 191–216 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kara, B.Y., Tansel, B.C.: The single-assignment hub covering problem: models and linearizations. J. Oper. Res. Soc. 54(1), 59–64 (2003)CrossRefGoogle Scholar
  7. 7.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    O’Kelly, M.E.: Activity levels at hub facilities in interacting networks. Geogr. Anal. 18(4), 343–356 (1986)CrossRefGoogle Scholar
  9. 9.
    O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 32(3), 393–404 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Peker, M., Kara, B.Y.: The P-Hub maximal covering problem and extensions for gradual decay functions. Omega 54, 158–172 (2015)CrossRefGoogle Scholar
  11. 11.
    Silva, M.R., Cunha, C.B.: A tabu search heuristic for the uncapacitated single allocation p-hub maximal covering problem. Eur. J. Oper. Res. 262(3), 954–965 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Matheus de Araujo Butinholi
    • 1
    Email author
  • Alexandre Xavier Martins
    • 1
  • Paganini Barcellos de Oliveira
    • 1
  • Diego Perdigão Martino
    • 1
  1. 1.Instituto de Ciências Exatas e Aplicadas, Departamento de Engenharia de ProduçãoUniversidade Federal de Ouro PretoJoão MonlevadeBrazil

Personalised recommendations