Accelerating a Classic 3D Video Game on Heterogeneous Reconfigurable MPSoCs

  • Leonardo SurianoEmail author
  • David Lima
  • Eduardo de la Torre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12083)


Heterogeneous Reconfigurable MPSoCs, coupling microprocessors with Programmable Logic, are becoming extremely important in High-Performance Embedded Computing domain where energy consumption is a key factor to be considered by every designer. However, efficient hardware/software co-design still requires experience and a big effort: finding an optimal solution and an acceptable trade-off between performance and energy may require several tests and it is strongly platform-dependent. To this respect, a Dataflow-based method is used in this work for exploring different hardware/software configurations (number of hardware accelerators and FPGA frequency). As a use case, the acceleration of a well-known 3D video game (DOOM) is presented. The method offers rapid trade-off analysis in terms of non-functional parameters such as computing performance or power/energy measurements.

Extensive experimental results show that is possible to speed up the game and, at the same time, reduce the energy consumption of the whole platform. A custom Linux-based Operating System for Zynq Ultrascale+ was created, including a GPU driver to support a graphical interface on an HDMI screen and drivers to manage custom hardware accelerators on the FPGA side.

The best solution to save up to 63% of energy corresponds to the use of four parallel hardware accelerators, where a function speed up of x3.6 and an application speed up of x2 (in line with Amdahl’s law) is obtained.

Additionally, a set of Pareto optimal solutions are reported in the results section.


Hardware acceleration FPGA Performance measurement Power measurement Energy measurement Design space exploration Pareto Front MPSoC Zynq Ultrascale+ Linux Driver 3D video game DOOM 



This work was supported by the Spanish Ministry (Ministerio de Economía y Competitividad) under projects PLATINO under Grant TEC2012-31145.


  1. 1.
    Agne, A., et al.: ReconOS: an operating system approach for reconfigurable computing. IEEE Micro 34(1), 60–71 (2014)CrossRefGoogle Scholar
  2. 2.
    Arrestier, F., Desnos, K., Pelcat, M., Heulot, J., Juarez, E., Menard, D.: Delays and states in dataflow models of computation. In: Proceedings of the 18th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2018, pp. 47–54. ACM, New York (2018).
  3. 3.
    Baghdadi, A., Zergainoh, N., Cesario, W., Roudier, T., Jerraya, A.A.: Design space exploration for hardware/software codesign of multiprocessor systems. In: Proceedings 11th International Workshop on Rapid System Prototyping, RSP 2000. Shortening the Path from Specification to Prototype (Cat. No. PR00668), pp. 8–13, June 2000.
  4. 4.
    Beltrame, G., Fossati, L., Sciuto, D.: Decision-theoretic design space exploration of multiprocessor platforms. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(7), 1083–1095 (2010). Scholar
  5. 5.
    Blythe, S.A., Walker, R.A.: Efficient optimal design space characterization methodologies. ACM Trans. Des. Autom. Electron. Syst. 5(3), 322–336 (2000). Scholar
  6. 6.
    Bruni, D., Bogliolo, A., Benini, L.: Statistical design space exploration for application-specific unit synthesis. In: Proceedings of the 38th Design Automation Conference (IEEE Cat. No. 01CH37232), pp. 641–646, June 2001.
  7. 7.
    Caldas-Calle, L., Jara, J., Huerta, M., Gallegos, P.: QoS evaluation of VPN in a Raspberry Pi devices over wireless network. In: 2017 International Caribbean Conference on Devices, Circuits and Systems (ICCDCS), pp. 125–128, June 2017.
  8. 8.
    Castrillon, J., Leupers, R.: Programming Heterogeneous MPSoCs: Tool Flows to Close the Software Productivity Gap. Technical report, Lehrstuhl für Software für Systeme auf Silizium (2013)Google Scholar
  9. 9.
    Charitopoulos, G., Koidis, I., Papadimitriou, K., Pnevmatikatos, D.: Hardware task scheduling for partially reconfigurable FPGAs. In: Sano, K., Soudris, D., Hübner, M., Diniz, P.C. (eds.) ARC 2015. LNCS, vol. 9040, pp. 487–498. Springer, Cham (2015). Scholar
  10. 10.
    Open-Source Community: Chocolate doom Wiki-pages (2019).
  11. 11.
    Coşar, M., Karasartova, S.: A firewall application on SOHO networks with Raspberry Pi and snort. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 1000–1003, October 2017.
  12. 12.
    Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.: PiMM: parameterized and interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In: 2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII), pp. 41–48. IEEE (2013)Google Scholar
  13. 13.
    Eckert, M., Meyer, D., Haase, J., Klauer, B.: Operating system concepts for reconfigurable computing: review and survey. Int. J. Reconfigurable Comput. 2016, 1–11 (2016)CrossRefGoogle Scholar
  14. 14.
    Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE Trans. Evol. Comput. 10(3), 358–374 (2006). Scholar
  15. 15.
    FANDOM: Doom Wiki (2019).
  16. 16.
    Gajski, D.D., Vahid, F., Narayan, S.: SpecSyn: an environment supporting the specify-explore-refine paradigm for hardware/software system design. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 6(1), 84–100 (1998). Scholar
  17. 17.
    Gries, M.: Methods for evaluating and covering the design space during early design development. Integr. VLSI J. 38(2), 131–183 (2004)CrossRefGoogle Scholar
  18. 18.
    Harish Kumar, B.: WSN based automatic irrigation and security system using Raspberry Pi board. In: 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), pp. 1097–1103, September 2017.
  19. 19.
  20. 20.
    Ismail, A., Shannon, L.: FUSE: front-end user framework for O/S abstraction of hardware accelerators. In: 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 170–177. IEEE (2011)Google Scholar
  21. 21.
    Kang, E., Jackson, E., Schulte, W.: An approach for effective design space exploration. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 33–54. Springer, Heidelberg (2011). Scholar
  22. 22.
    Kang, S., Kumar, R.: Magellan: a search and machine learning-based framework for fast multi-core design space exploration and optimization. In: 2008 Design, Automation and Test in Europe, pp. 1432–1437, March 2008.
  23. 23.
    Kreutz, M., Marcon, C.A., Carro, L., Wagner, F., Susin, A.A.: Design space exploration comparing homogeneous and heterogeneous network-on-chip architectures. In: Proceedings of the 18th Annual Symposium on Integrated Circuits and System Design, SBCCI 2005, pp. 190–195. ACM, New York (2005).
  24. 24.
    Lahiri, K., Raghunathan, A., Dey, S.: System-level performance analysis for designing on-chip communication architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(6), 768–783 (2001). Scholar
  25. 25.
    Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for combinatorial optimization problems. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 40, 229–240 (2010)CrossRefGoogle Scholar
  26. 26.
    Madroñal, D., et al.: Automatic instrumentation of dataflow applications using PAPI. In: Proceedings of the 15th ACM International Conference on Computing Frontiers, pp. 232–235. ACM (2018)Google Scholar
  27. 27.
    Nag, K., Pal, T., Pal, N.R.: ASMiGA: an archive-based steady-state micro genetic algorithm. IEEE Trans. Cybern. 45(1), 40–52 (2015). Scholar
  28. 28.
    Orsila, H., Salminen, E., Hämäläinen, T.: Parameterizing simulated annealing for distributing Kahn process networks on multiprocessor SoCs. In: 2009 International Symposium on System-on-Chip, pp. 019–026, November 2009.
  29. 29.
    Park, C., Chung, J., Ha, S.: Extended synchronous dataflow for efficient DSP system prototyping. IEEE, June 1999Google Scholar
  30. 30.
    Parthornratt, T., Burapanonte, N., Gunjarueg, W.: People identification and counting system using Raspberry Pi (AU-PICC: Raspberry Pi customer counter). In: 2016 International Conference on Electronics, Information, and Communications (ICEIC), pp. 1–5. IEEE (2016)Google Scholar
  31. 31.
    Pelcat, M., et al.: PREESM: a dataflow-based rapid prototyping framework for simplifying multicore DSP programming. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp. 36–40. IEEE (2014)Google Scholar
  32. 32.
    Pimentel, A.D.: Exploring exploration: a tutorial introduction to embedded systems design space exploration. IEEE Des. Test 34(1), 77–90 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Qadri, M.Y., Qadri, N.N., McDonald-Maier, K.D.: Fuzzy logic based energy and throughput aware design space exploration for MPSoC. Microprocess. Microsyst. 40, 113–123 (2016)CrossRefGoogle Scholar
  34. 34.
    Sekar, C., et al.: Tutorial T7: designing with Xilinx SDSoC. In: 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID), pp. xl–xli. IEEE (2017)Google Scholar
  35. 35.
    Shani, G.: Task-based decomposition of factored POMDPs. IEEE Trans. Cybern. 44(2), 208–216 (2014). Scholar
  36. 36.
    Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core systems: survey of current and emerging trends. In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–10. IEEE (2013)Google Scholar
  37. 37.
    Sogi, N.R., Chatterjee, P., Nethra, U., Suma, V.: SMARISA: a Raspberry Pi based smart ring for women safety using IoT. In: 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 451–454, July 2018.
  38. 38.
    Suriano, L., et al.: DAMHSE: programming heterogeneous MPSocS with hardware acceleration using dataflow-based design space exploration and automated rapid prototyping. Microprocess. Microsyst. 71, 102882 (2019)CrossRefGoogle Scholar
  39. 39.
    Suriano, L., Madroñal, D., Rodríguez, A., Juárez, E., Sanz, C., de la Torre, E.: A unified hardware/software monitoring method for reconfigurable computing architectures using PAPI. In: 2018 13th International Symposium on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1–8. IEEE (2018)Google Scholar
  40. 40.
    Suriano, L., Rodriguez, A., Desnos, K., Pelcat, M., de la Torre, E.: Analysis of a heterogeneous multi-core, multi-hw-accelerator-based system designed using PREESM and SDSoC. In: 2017 12th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–7. IEEE (2017)Google Scholar
  41. 41.
    Theelen, B.D., Geilen, M.C., Basten, T., Voeten, J.P., Gheorghita, S.V., Stuijk, S.: A scenario-aware data flow model for combined long-run average and worst-case performance analysis. In: Fourth ACM and IEEE International Conference on Formal Methods and Models for Co-Design, MEMOCODE 2006. Proceedings, pp. 185–194. IEEE (2006)Google Scholar
  42. 42.
    Wang, Y., et al.: SPREAD: a streaming-based partially reconfigurable architecture and programming model. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(12), 2179–2192 (2013)CrossRefGoogle Scholar
  43. 43.
    Wolf, W., Jerraya, A.A., Martin, G.: Multiprocessor system-on-chip (MPSoC) technology. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(10), 1701–1713 (2008)CrossRefGoogle Scholar
  44. 44.
    Xilinx: Vivado design suite user guide - high level synthesis (2018)Google Scholar
  45. 45.
  46. 46.
    Xin, B., Chen, J., Zhang, J., Dou, L., Peng, Z.: Efficient decision makings for dynamic weapon-target assignment by virtual permutation and Tabu search heuristics. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(6), 649–662 (2010). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Politécnica de MadridMadridSpain

Personalised recommendations