Advertisement

Simulation and Software for Diagnostic Systems

  • Vitalii P. BabakEmail author
  • Serhii V. Babak
  • Mykhailo V. Myslovych
  • Artur O. Zaporozhets
  • Valeriy M. Zvaritch
Chapter
  • 12 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 281)

Abstract

In this article the methods and algorithms for simulation of noise and rhythm signals in the diagnostic systems are analyzed. Values of theoretical and experimental moments of studied models and their estimates are obtained. Also the realizations of simulated processes (stationary and periodically correlated), their correlation functions estimates and spectral densities estimates are obtained. The general structure of diagnostic systems software are proposed. Software structure of the block of functional load of statistical data processing is realized. The architecture of user interface formation, necessary settings installation, operating modes selection and indication of results are shown for control unit. Features of the use of neural networks in diagnostic systems based on ART-2 are considered.

Keywords

Noise signals Rhythm signals Computer simulation Diagnostic systems software Neural networks 

References

  1. 1.
    Inoue, H., Harrigan, J.J., Reid, S.R.: Review of inverse analysis for indirect measurement of impact force. Appl. Mech. Rev. 54(6), 503–524 (2001).  https://doi.org/10.1115/1.1420194CrossRefGoogle Scholar
  2. 2.
    Yan, G., Zhou, L.: Impact load identification of composite structure using genetic algorithms. J. Sound Vib. 3–5(319), 869–884 (2009).  https://doi.org/10.1016/j.jsv.2008.06.051CrossRefGoogle Scholar
  3. 3.
    Allen, M., Carne, T. Comparison of inverse structural filter (ISF) and sum of weighted accelerations (SWAT) time domain force identification methods. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 1–4 May 2006.  https://doi.org/10.2514/6.2006-1885
  4. 4.
    Bataineh, M., Marler, T.: Neural network for regression problems with reduced training sets. Neural Netw. 95, 1–9 (2017).  https://doi.org/10.1016/j.neunet.2017.07.018CrossRefGoogle Scholar
  5. 5.
    Li, H., Li, C., Huang, T.: Periodicity and stability for variable-time impulsive neural networks. Neural Netw. 94, 24–33 (2017).  https://doi.org/10.1016/j.neunet.2017.06.006CrossRefzbMATHGoogle Scholar
  6. 6.
    Babak, V., Eremenko V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4) (2019)Google Scholar
  7. 7.
    Krasilnikov, A., Beregun, V., Harmash, O.: Analysis of estimation errors of the fifth and sixth order cumulants. In: 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), April 16–18, 2019, Kyiv, Ukraine, pp. 754–759.  https://doi.org/10.1109/elnano.2019.8783910
  8. 8.
    Babak, V., Filonenko, S., Kalita, V.: Model of acoustic emission signal at self-accelerated crack development. Aviation 9(3), 3–8 (2005).  https://doi.org/10.3846/16487788.2005.9635904CrossRefGoogle Scholar
  9. 9.
    Babak, V., Filonenko, S., Kalita, V.: Acoustic emission under temperature tests of materials. Aviation 9(4), 24–28 (2005).  https://doi.org/10.3846/16487788.2005.9635914CrossRefGoogle Scholar
  10. 10.
    Chen, C.H.: Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization (2007). ISBN: 978-981-270-409-2Google Scholar
  11. 11.
    Eremenko, V., Zaporozhets, A., Isaenko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: CEUR Workshop Proceedings, vol. 2387, pp. 202–214 (2019). http://ceur-ws.org/Vol-2387/20190202.pdf
  12. 12.
    Eremenko, V.S., Pereidenko, A.V., Roganov, V.O.: System of standardless diagnostic of cell panels based on Fuzzy-ART neural network. In: 2011 Microwaves, Radar and Remote Sensing Symposium, 25–27 Aug 2011, Kiev, Ukraine.  https://doi.org/10.1109/mrrs.2011.6053630
  13. 13.
    Grosse, C.U., Ohtsu, M. Acoustic Emission Testing (2008). ISBN: 978-3-540-69972-9Google Scholar
  14. 14.
    Milovančević, M., Milenković, D., Troha, S.: The optimization of the vibrodiagnostic method applied on turbo machines. Trans. FAMENA 3(33), 60–70 (2009)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vitalii P. Babak
    • 1
    Email author
  • Serhii V. Babak
    • 2
  • Mykhailo V. Myslovych
    • 3
  • Artur O. Zaporozhets
    • 4
  • Valeriy M. Zvaritch
    • 5
  1. 1.Institute of Engineering Thermophysics of NAS of UkraineKyivUkraine
  2. 2.Committee on Education, Science and Innovation of Verkhovna Rada of UkraineKyivUkraine
  3. 3.Department of Theoretical Electrical EngineeringInstitute of Electrodynamics of NAS of UkraineKyivUkraine
  4. 4.Department of Monitoring and Optimization of Thermophysical ProcessesInstitute of Engineering Thermophysics of NAS of UkraineKyivUkraine
  5. 5.Department of Theoretical Electrical EngineeringInstitute of Electrodynamics of NAS of UkraineKyivUkraine

Personalised recommendations