Disambiguating Requirements Through Syntax-Driven Semantic Analysis of Information Types
- 575 Downloads
Abstract
[Context and motivation] Several state laws and app markets, such as Google Play, require the disclosure of app data practices to users. These data practices constitute critical privacy requirements statements, since they underpin the app’s functionality while describing how various personal information types are collected, used, and with whom they are shared. [Question/Problem] When such statements contain abstract terminology referring to information types (e.g., “we collect your device information”), the statements can become ambiguous and thus reduce shared understanding among app developers, policy writers and users. [Principle Ideas/Results] To overcome this obstacle, we propose a syntax-driven method to infer semantic relations from a given information type. We use the inferred relations from a set of information types (i.e. lexicon) to populate a partial ontology. The ontology is a knowledge graph that can be used to guide requirements authors in the selection of the most appropriate information type terms. [Contributions] Our method employs a shallow typology to categorize individual words in an information type, which are then used to discharge production rules in a context-free grammar (CFG). The CFG is augmented with semantic attachments that are used to generate the semantic relations. This method is evaluated on 1,853 unique information types from 30 privacy policies to yield 0.99 precision and 0.91 recall when compared to human interpretation of the same information types.
Keywords
Privacy policy Abstraction OntologyNotes
Acknowledgment
This research was supported by NSF #1736209 and #1748109.
References
- 1.Anton, A.I., Earp, J.B.: A requirements taxonomy for reducing web site privacy vulnerabilities. Requir. Eng. 9(3), 169–185 (2004)CrossRefGoogle Scholar
- 2.Bach, E.: An extension of classical transformational grammar (1976)Google Scholar
- 3.Bhatia, J., Breaux, T.D.: Towards an information type lexicon for privacy policies. In: RELAW, pp. 19–24. IEEE (2015)Google Scholar
- 4.Bhatia, J., Breaux, T.D., Schaub, F.: Mining privacy goals from privacy policies using hybridized task recomposition. TOSEM 25(3), 22 (2016)CrossRefGoogle Scholar
- 5.Boyd, S., Zowghi, D., Gervasi, V.: Optimal-constraint lexicons for requirements specifications. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 203–217. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73031-6_15CrossRefGoogle Scholar
- 6.Breaux, T.D., Antón, A.I., Spafford, E.H.: A distributed requirements management framework for legal compliance and accountability. Comput. Secur. 28(1–2), 8–17 (2009)CrossRefGoogle Scholar
- 7.Breaux, T.D., Baumer, D.L.: Legally “reasonable” security requirements: a 10-year FTC retrospective. Comput. Secur. 30(4), 178–193 (2011)CrossRefGoogle Scholar
- 8.Breaux, T.D., Hibshi, H., Rao, A.: Eddy, a formal language for specifying and analyzing data flow specifications for conflicting privacy requirements. Requir. Eng. 19(3), 281–307 (2013). https://doi.org/10.1007/s00766-013-0190-7 CrossRefGoogle Scholar
- 9.Breitman, K.K., do Prado Leite, J.C.S.: Ontology as a requirements engineering product. In: Proceedings. In: 11th IEEE International Requirements Engineering Conference, pp. 309–319. IEEE (2003)Google Scholar
- 10.Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. Sage Publications (2014)Google Scholar
- 11.De Saussure, F., Harris, R.: Course in General Linguistics. (Open Court Classics). Open Court, Chicago and La Salle (1998)Google Scholar
- 12.Evans, M.C., Bhatia, J., Wadkar, S., Breaux, T.D.: An evaluation of constituency-based hyponymy extraction from privacy policies. In: RE, pp. 312–321. IEEE (2017)Google Scholar
- 13.Fensel, D., McGuiness, D., Schulten, E., Ng, W.K., Lim, G.P., Yan, G.: Ontologies and electronic commerce. IEEE Intell. Syst. 16(1), 8–14 (2001)CrossRefGoogle Scholar
- 14.Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971)CrossRefGoogle Scholar
- 15.Frege, G.: Über begriff und gegenstand (1892)Google Scholar
- 16.FTC: FTC’s \(\$\)5 billion Facebook settlement: record-breaking and history-making (2019)Google Scholar
- 17.Gervasi, V., Zowghi, D.: On the role of ambiguity in RE. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 248–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14192-8_22CrossRefGoogle Scholar
- 18.Harris, K.D.: Privacy on the go: recommendations for the mobile ecosystem (2013)Google Scholar
- 19.Henk, B.: The lambda calculus: its syntax and semantics. Stud. Logic Found. Math. (1984)Google Scholar
- 20.Hookway, C.: Peirce-Arg Philosophers. Routledge, Abingdon (2010)CrossRefGoogle Scholar
- 21.Bokaei Hosseini, M., Breaux, T.D., Niu, J.: Inferring ontology fragments from semantic role typing of lexical variants. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018. LNCS, vol. 10753, pp. 39–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-1_3CrossRefGoogle Scholar
- 22.Hosseini, M.B., Wadkar, S., Breaux, T.D., Niu, J.: Lexical similarity of information type hypernyms, meronyms and synonyms in privacy policies. In: AAAI Fall Symposium (2016)Google Scholar
- 23.Janssen, T.M., Partee, B.H.: Compositionality. In: Handbook of Logic and Language, pp. 417–473. Elsevier (1997)Google Scholar
- 24.Jurafsky, D., Martin, J.H.: Speech and Language Processing, vol. 3. Pearson, London (2014)Google Scholar
- 25.Massey, A.K., Rutledge, R.L., Antón, A.I., Swire, P.P.: Identifying and classifying ambiguity for regulatory requirements. In: RE, pp. 83–92. IEEE (2014)Google Scholar
- 26.Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
- 27.Oltramari, A., et al.: PrivOnto: a semantic framework for the analysis of privacy policies. Semant. Web 9(2), 185–203 (2018)CrossRefGoogle Scholar
- 28.Petronella, G.: Analyzing privacy of android applications (2014)Google Scholar
- 29.Reidenberg, J.R., Bhatia, J., Breaux, T.D., Norton, T.B.: Ambiguity in privacy policies and the impact of regulation. J. Leg. Stud. 45(S2), S163–S190 (2016)CrossRefGoogle Scholar
- 30.Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Thousand Oaks (2015)Google Scholar
- 31.Slavin, R., et al.: Toward a framework for detecting privacy policy violations in android application code. In: ICSE (2016)Google Scholar
- 32.Wang, X., Qin, X., Hosseini, M.B., Slavin, R., Breaux, T.D., Niu, J.: GUILeak: identifying privacy practices on GUI-based data (2018)Google Scholar
- 33.Zimmeck, S., et al.: Automated analysis of privacy requirements for mobile apps. In: NDSS (2017)Google Scholar