Getting Ready for Terahertz Electronics

  • Mladen BožanićEmail author
  • Saurabh Sinha
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 658)


In the opening sections of this book, terahertz waves (sometimes abbreviated THz waves) were briefly introduced as waves with frequencies in the range between 300 GHz and 3 THz, situated directly above the millimeter-wave range in the frequency spectrum. Although it is “millimeter-waves” that appear in the title of this book, the discussions on the topics explored in the previous six chapters would be incomplete without at least a one-chapter-long discussion on the part of the spectrum that has emerged as a natural extension of the said millimeter-wave spectrum.


  1. 1.
    Božanić M, Sinha S (2019) Emerging transistor technologies capable of terahertz amplification: a way to re-engineer terahertz radar sensors. Sensors 19:2454CrossRefGoogle Scholar
  2. 2.
    Basiri R, Abiri H, Yahaghi A (2014) Optimization of metamaterial structures for terahertz and microwave sensor applications. Microwave Opt Technol Lett 56:636–642CrossRefGoogle Scholar
  3. 3.
    Nahata A, Weling AS, Heinz TF (1996) A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl Phys Lett. 69:2321–2323CrossRefGoogle Scholar
  4. 4.
    Beard MC, Turner GM, Schmuttenmaer CA (2002) Terahertz spectroscopy. J Phys Chem B. 106:7146–7159CrossRefGoogle Scholar
  5. 5.
    Yang X, Pi Y, Liu T, Wang H (2018) Three-dimensional imaging of space debris with space-based terahertz radar. IEEE Sens J 18:1063–1072CrossRefGoogle Scholar
  6. 6.
    Lien J, Gillian N, Karagozler ME, Amihood P, Schwesig C, Olson E et al (2016) Soli: ubiquitous gesture sensing with millimeter wave radar. ACM Trans Graph 35:142:1–142:19Google Scholar
  7. 7.
    Cooper KB, Chattopadhyay G (2014) Submillimeter-wave radar: solid-state system design and applications. IEEE Microwave Mag 15:51–67CrossRefGoogle Scholar
  8. 8.
    Mumtaz S, Jornet JM, Aulin J, Gerstacker WH, Dong X, Ai B (2017) Terahertz communication for vehicular networks. IEEE Trans Veh Technol 66:5617–5625CrossRefGoogle Scholar
  9. 9.
    Huang K, Wang Z (2011) Terahertz terabit wireless communication. IEEE Microwave Mag 12:108–116CrossRefGoogle Scholar
  10. 10.
    Kürner T, Priebe S (2014) Towards THz communications—status in research, standardization and regulation. J Infrared Milli Terahz Waves 35:53–62CrossRefGoogle Scholar
  11. 11.
    Akyildiz IF, Jornet JM, Han C (2014a) Terahertz band: next frontier for wireless communications. Phys Commun 12:16–32CrossRefGoogle Scholar
  12. 12.
    Božanić M, Sinha S (2017) Millimeter-wave low noise amplifiers. SpringerGoogle Scholar
  13. 13.
    Kleine-Ostmann T, Nagatsuma T (2011) A review on terahertz communications research. J Infrared Milli Terahz Waves 32:143–171CrossRefGoogle Scholar
  14. 14.
    Saeedkia D (2013) Handbook of terahertz technology for imaging, sensing and communications. ElsevierGoogle Scholar
  15. 15.
    Tajima T, Kosugi T, Song H-J, Hamada H, El Moutaouakil A, Sugiyama H et al (2016) Terahertz MMICs and antenna-in-package technology at 300 GHz for KIOSK download system. J Infrared Milli Terahz Waves. 37:1213–1224CrossRefGoogle Scholar
  16. 16.
    Akyildiz IF, Jornet JM, Han C (2014b) TeraNets: ultra-broadband communication networks in the terahertz band. IEEE Wirel Commun 21:130–135CrossRefGoogle Scholar
  17. 17.
    Pozar DM (2012) Microwave engineering. WileyGoogle Scholar
  18. 18.
    du Preez J, Sinha S (2017) Millimeter-wave power amplifiers. SpringerGoogle Scholar
  19. 19.
    Choi J, Va V, Gonzalez-Prelcic N, Daniels R, Bhat CR, Heath RW (2016) Millimeter-wave vehicular communication to support massive automotive sensing. IEEE Commun Mag 54:160–167CrossRefGoogle Scholar
  20. 20.
    Jasteh D, Hoare EG, Cherniakov M, Gashinova M (2016) Experimental low-terahertz radar image analysis for automotive terrain sensing. IEEE Geosci Remote Sens Lett 13:490–494CrossRefGoogle Scholar
  21. 21.
    Ergün S, Sönmez S (2015) Terahertz technology for military applications. J Manag Inf Sci 3:13–16CrossRefGoogle Scholar
  22. 22.
    Zhou Z, Cao Z, Pi Y (2018) Dynamic gesture recognition with a terahertz radar based on range profile sequences and doppler signatures. Sensors 18:10CrossRefGoogle Scholar
  23. 23.
    McMillan RW (2006) Terahertz imaging, millimeter-wave radar. In: Byrnes J, Ostheimer G (eds) Advances in sensing with security applications. Netherlands, Springer, pp 243–268CrossRefGoogle Scholar
  24. 24.
    Muravev VM, Tsydynzhapov GE, Kukushkin IV, Mcnee I, Kozlov VG (2017) Terahertz imaging: a technology in search of applications. Laser Focus World 53:50–53Google Scholar
  25. 25.
    Nuessler D, Schubert M, Kose S, Pohl N (2017) Swifter security scanning: millimeter-wave imaging with spin. IEEE Microwave Mag 18:70–78CrossRefGoogle Scholar
  26. 26.
    Friederich F, von Spiegel W, Bauer M, Meng F, Thomson MD, Boppel S et al (2011) THz active imaging systems with real-time capabilities. IEEE Trans Terahertz Sci Technol 1:183–200CrossRefGoogle Scholar
  27. 27.
    Cox JA, Higashi R, Nusseibeh F, Zins C (2011) MEMS-based uncooled THz detectors for staring imagers. Micro- and nanotechnology sensors, systems, and applications III [Internet]. International Society for Optics and Photonics [cited 2019 Feb 1], p 80310D. Available from:
  28. 28.
    Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J et al (2017) The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 50:043001CrossRefGoogle Scholar
  29. 29.
    Dickinson JC, Goyette TM, Waldman J (2004) High resolution imaging using 325 GHz and 1.5 THz transceivers. In: Fifteenth international symposium on Space terahertz technology (STT2004), pp 27–29Google Scholar
  30. 30.
    Crowe TW, Mattauch RJ, Roser HP, Bishop WL, Peatman WCB, Liu X (1992) GaAs Schottky diodes for THz mixing applications. Proc IEEE 80:1827–1841CrossRefGoogle Scholar
  31. 31.
    Mehdi I, Siles JV, Lee C, Schlecht E (2017) THz diode technology: status, prospects, and applications. Proc IEEE 105:990–1007CrossRefGoogle Scholar
  32. 32.
    Nagatsuma T, Ducournau G, Renaud CC (2016) Advances in terahertz communications accelerated by photonics. Nat Photonics 10:371–379CrossRefGoogle Scholar
  33. 33.
    Ding L, Ye Y, Ye G, Zhu Y (2018) Terahertz bistatic synthetic aperture radar for 1-D near-field high-resolution imaging. J Infrared Milli Terahz Waves 39:1162–1173CrossRefGoogle Scholar
  34. 34.
    Lui HS, Taimre T, Bertling K, Lim YL, Dean P, Khanna SP et al (2015) Terahertz radar cross section characterization using laser feedback interferometry with a quantum cascade laser. Electron Lett 51:1774–1776CrossRefGoogle Scholar
  35. 35.
    Grundmann M (2010) The physics of seminconductors: an introduction including nanoparticles and applications. Springer, BerlinCrossRefGoogle Scholar
  36. 36.
    Mao Q, Wen Q-Y, Tian W, Wen T-L, Chen Z, Yang Q-H et al (2014) High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors. Opt Lett, OL 39:5649–5652CrossRefGoogle Scholar
  37. 37.
    Wen Q-Y, He Y-L, Liu J-B, Mao Q, Yang Q-H, Chen Z et al (2018) Graphene field-effect Transistor for terahertz modulation. Design, simulation and construction of field effect transistors. IntechOpenGoogle Scholar
  38. 38.
    Lambrechts W, Sinha S, Abdallah JA, Prinsloo J (2018) Extending Moore’s law through advanced semiconductor design and processing techniques. CRC Press, Boca RatonCrossRefGoogle Scholar
  39. 39.
    Jornet JM, Akyildiz IF (2014) Graphene-based plasmonic nano-transceiver for terahertz band communication. In: The 8th European conference on antennas and propagation (EuCAP 2014), pp 492–496Google Scholar
  40. 40.
    Zangeneh-Nejad F, Safian R (2016a) Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure. JNP 10:036005Google Scholar
  41. 41.
    Xu Z, Dong X, Bornemann J (2014) Design of a reconfigurable MIMO system for THz communications Based on graphene antennas. IEEE Trans Terahertz Sci Technol 4:609–617CrossRefGoogle Scholar
  42. 42.
    Bandurin DA, Svintsov D, Gayduchenko I, Xu SG, Principi A, Moskotin M et al (2018) Resonant terahertz detection using graphene plasmons. Nat Commun 9:5392CrossRefGoogle Scholar
  43. 43.
    Zangeneh-Nejad F, Safian R (2016b) A graphene-Based THz ring resonator for label-free sensing. IEEE Sens J 16:4338–4344CrossRefGoogle Scholar
  44. 44.
    Sensale-Rodríguez B, Yan R, Liu L, Jena D, Xing HG (2013) Graphene for reconfigurable terahertz optoelectronics. Proc IEEE 101:1705–1716CrossRefGoogle Scholar
  45. 45.
    Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A et al (2015) Black phosphorus terahertz photodetectors. Adv Mater 27:5567–5572CrossRefGoogle Scholar
  46. 46.
    Dyakonov M, Shur M (1996) Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Devices 43:380–387CrossRefGoogle Scholar
  47. 47.
    Schuster F, Coquillat D, Videlier H, Sakowicz M, Teppe F, Dussopt L et al (2011) Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Opt Express, OE 19:7827–7832CrossRefGoogle Scholar
  48. 48.
    Ikamas K, Lisauskas A, Boppel S, Hu Q, Roskos HG (2017) Efficient detection of 3 THz radiation from quantum cascade laser using silicon CMOS detectors. J Infrared Milli Terahz Waves 38:1183–1188CrossRefGoogle Scholar
  49. 49.
    Čibiraitė D, Bauer M, Rämer A, Chevtchenko S, Lisauskas A, Matukas J et al (2017) Enhanced performance of AlGaN/GaN HEMT-based THz detectors at room temperature and at low temperature. In: 2017 42nd international conference on infrared, millimeter, and terahertz waves (IRMMW-THz), pp 1–2Google Scholar
  50. 50.
    Coquillat D, Nodjiadjim V, Blin S, Konczykowska A, Dyakonova N, Consejo C et al (2016) High-speed room temperature terahertz detectors based on InP double heterojunction bipolar transistors. Int J Hi Spe Ele Syst 25:1640011CrossRefGoogle Scholar
  51. 51.
    Bilgin H, Zahertar S, Sadeghzadeh S, Yalcinkaya AD, Torun H (2016) A MEMS-based terahertz detector with metamaterial-based absorber and optical interferometric readout. Sens Actuators, A 244:292–298CrossRefGoogle Scholar
  52. 52.
    Lachner R (2014) (Invited) Towards 0.7 terahertz silicon germanium heterojunction bipolar technology—the DOTSEVEN project. ECS Trans 4(64):21–37Google Scholar
  53. 53.
    Schroter M, Wedel G, Heinemann B, Jungemann C, Krause J, Chevalier P et al (2011) Physical and electrical performance limits of High-speed SiGeC HBTs—Part I: vertical scaling. IEEE Trans Electron Devices 58:3687–3696CrossRefGoogle Scholar
  54. 54.
    Schroter M, Krause J, Rinaldi N, Wedel G, Heinemann B, Chevalier P et al (2011) Physical and electrical performance limits of high-speed Si GeC HBTs—Part II: lateral scaling. IEEE Trans Electron Devices 58:3697–3706CrossRefGoogle Scholar
  55. 55.
    Schröter M, Rosenbaum T, Chevalier P, Heinemann B, Voinigescu SP, Preisler E et al (2017) SiGe HBT technology: future trends and TCAD-based roadmap. Proc IEEE 105:1068–1086CrossRefGoogle Scholar
  56. 56.
    Chakraborty PS, Cardoso AS, Wier BR, Omprakash AP, Cressler JD, Kaynak M et al (2014) A 0.8 THz fMAX SiGe HBT operating at 4.3 K. IEEE Electron Device Lett 35:151–153Google Scholar
  57. 57.
    Yuan J (2013) Using temperature to explore the scaling limits of SiGe HBTs. Extreme Environment Electronics. CRC Press, Boca RatonGoogle Scholar
  58. 58.
    Samoska LA (2011) An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans Terahertz Sci Technol 1:9–24CrossRefGoogle Scholar
  59. 59.
    Urteaga M, Griffith Z, Seo M, Hacker J, Rodwell MJW (2017) InP HBT technologies for THz integrated circuits. Proc IEEE 105:1051–1067CrossRefGoogle Scholar
  60. 60.
    Urteaga M, Hacker J, Griffith Z, Young A, Pierson R, Rowell P et al (2016) A 130 nm InP HBT integrated circuit technology for THz electronics. In: 2016 IEEE international electron devices meeting (IEDM), pp 29.2.1–29.2.4.Google Scholar
  61. 61.
    Seo M, Urteaga M, Hacker J, Young A, Griffith Z, Jain V et al (2011) InP HBT IC technology for terahertz frequencies: fundamental oscillators up to 0.57 THz. IEEE J Solid-State Circuits 46:2203–2214Google Scholar
  62. 62.
    Chevalier P, Schröter M, Bolognesi CR, d’Alessandro V, Alexandrova M, Böck J et al (2017) Si/SiGe: C and InP/GaAsSb heterojunction bipolar transistors for THz applications. Proc IEEE 105:1035–1050CrossRefGoogle Scholar
  63. 63.
    Bolognesi CR, Flückiger R, Alexandrova M, Quan W, Lövblom R, Ostinelli O (2016) InP/GaAsSb DHBTs for THz applications and improved extraction of their cutoff frequencies. In: 2016 IEEE international electron devices meeting (IEDM), pp 29.5.1–29.5.4Google Scholar
  64. 64.
    Rodwell MJW, Le M, Brar B (2008) InP bipolar ICs: scaling roadmaps, frequency limits, manufacturable technologies. Proc IEEE 96:271–286CrossRefGoogle Scholar
  65. 65.
    Weimann NG, Stoppel D, Schukfeh MI, Hossain M, Al-Sawaf T, Janke B et al (2016) SciFab—A wafer-level heterointegrated InP DHBT/SiGe BiCMOS foundry process for mm-wave applications. Phys Status Solidi (a) 213:909–916CrossRefGoogle Scholar
  66. 66.
    Tessmann A, Leuther A, Massler H, Hurm V, Kuri M, Zink M et al (2014) A 600 GHz low-noise amplifier module. In: 2014 IEEE MTT-S international microwave symposium (IMS2014), pp 1–3Google Scholar
  67. 67.
    Tang Y, Shinohara K, Regan D, Corrion A, Brown D, Wong J et al (2015) Ultrahigh-speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz. IEEE Electron Device Lett 36:549–551CrossRefGoogle Scholar
  68. 68.
    Du J, Wang K, Liu Y, Bai Z, Liu Y, Feng Z et al (2017) Influence of mesa edge capacitance on frequency behavior of millimeter-wave AlGaN/GaN HEMTs. Solid-State Electron 129:1–5CrossRefGoogle Scholar
  69. 69.
    Latorre-Rey AD, Merrill K, Albrecht JD, Saraniti M (2019) Assessment of self-heating effects under lateral scaling of GaN HEMTs. IEEE Trans Electron Devices 66:908–916CrossRefGoogle Scholar
  70. 70.
    Jarndal A (2014) AlGaN/GaN HEMTs on SiC and Si substrates: a review from the small-signal-modeling’s perspective. Int J RF Microwave Comput Aided Eng 24:389–400CrossRefGoogle Scholar
  71. 71.
    Comyn R, Chenot S, Alouani WE, Nemoz M, Frayssinet E, Damilano B et al (2018) AlGaN/GaN/AlGaN DH-HEMTs Grown on a Patterned Silicon Substrate. Phys Status solidi (a) 215:1700642Google Scholar
  72. 72.
    Feng G, Boon CC, Meng F, Yi X, Li C (2016) An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications. IEEE Microwave Wirel Compon Lett 26:134–136Google Scholar
  73. 73.
    Lee TH (2014) Terahertz CMOS integrated circuits. In: 2014 IEEE international symposium on radio-frequency integration technology, pp 1–2Google Scholar
  74. 74.
    Ellinger F, Claus M, Schröter M, Carta C (2011) Review of advanced and beyond CMOS FET technologies for radio frequency circuit design. In: 2011 SBMO/IEEE MTT-S international microwave and optoelectronics conference (IMOC 2011), pp 347–351Google Scholar
  75. 75.
    Božanić M, Sinha S (2019) Systems-level packaging for millimeter-wave transceivers. Springer International PublishingGoogle Scholar
  76. 76.
    Chevalier P, Liebl W, Rucker H, Gauthier A, Manger D, Heinemann B et al (2018) SiGe BiCMOS current status and future trends in Europe. In: 2018 IEEE BiCMOS and compound semiconductor integrated circuits and technology symposium (BCICTS) [Internet]. IEEE, San Diego, CA [cited 2019 Apr 23], pp 64–71. Available from:
  77. 77.
    Han R, Hu Z, Wang C, Holloway J, Yi X, Kim M et al (2019) Filling the gap: silicon terahertz integrated circuits Offer Our best bet. IEEE Microwave Mag 20:80–93CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of JohannesburgJohannesburgSouth Africa

Personalised recommendations