Methodologies for Millimeter-Wave Circuit Design

  • Mladen BožanićEmail author
  • Saurabh Sinha
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 658)


At this point in the book, the reader has been introduced to three important aspects of methodologies for research, design and innovation in the millimeter-wave regime for technologies such as 5G. In Chap.  1, it was concluded that millimeter-wave research requires highly scaled process technologies with miniature features, with transistors so small that nanoscale effects come into play. In Chap.  2, it was established that the success of nanoscale circuit design depends heavily on the availably of modern EDA tools working with very advanced physics-based component models that allow design flow execution from schematic circuit design right down to layout verification and mask-processing steps.


  1. 1.
    Gray PR, Hurst P, Meyer RG, Lewis S (2009) Analysis and design of analog integrated circuits. Wiley, New YorkGoogle Scholar
  2. 2.
    Ndjountche T (2018) Amplifiers, comparators, multipliers, filters, and oscillators. CRC Press, Boca RatonCrossRefGoogle Scholar
  3. 3.
    Božanić M, Sinha S (2015) Power Amplifiers for the S-, C-, X- and Ku-bands: An EDA Perspective. Springer, BerlinGoogle Scholar
  4. 4.
    Raab FH, Asbeck P, Cripps S, Kenington PB, Popovic ZB, Pothecary N et al (2003) RF and microwave power amplifier and transmitter technologies—part 1. High Freq Electron 2:22–36Google Scholar
  5. 5.
    Kazimierczuk MK (2014) RF power amplifiers. Wiley, New YorkCrossRefGoogle Scholar
  6. 6.
    du Preez J, Sinha S (2017) Millimeter-wave power amplifiers. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Nikandish G, Medi A (2013) A design procedure for high-efficiency and compact-size 5–10-W MMIC power amplifiers in GaAs pHEMT technology. IEEE Trans Microw Theory Tech 61:2922–2933CrossRefGoogle Scholar
  8. 8.
    Eccleston KW, Smith KJI, Gough PT (2011) A compact class-F/class-C Doherty amplifier. Microw Opt Technol Lett 53:1606–1610CrossRefGoogle Scholar
  9. 9.
    Banerjee A, Hezar R, Ding L (2015) Efficiency improvement techniques for RF power amplifiers in deep submicron CMOS. In: 2015 IEEE custom integrated circuits conference (CICC), pp 1–4Google Scholar
  10. 10.
    Božanić M, Sinha S (2017) Millimeter-wave low noise amplifiers. Springer, BerlinGoogle Scholar
  11. 11.
    Chaturvedi S, Bozanic M, Sinha S (2017) Millimeter wave passive bandpass filters. Microw J 60Google Scholar
  12. 12.
    Chaturvedi S, Božanic M, Sinha S (2017) Millimeter wave active bandpass filters. Microw J 60Google Scholar
  13. 13.
    Ismail A, Abidi AA (2004) A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J Solid-State Circuits 39:2269–2277CrossRefGoogle Scholar
  14. 14.
    Min B, Rebeiz GM (2007) Ka-band SiGe HBT low noise amplifier design for simultaneous noise and input power matching. IEEE Microw Wirel Compon Lett 17:891–893CrossRefGoogle Scholar
  15. 15.
    Ortega RD, Khemchandani SL, Vzquez HG, del Pino Surez FJ (2014) Design of low-noise amplifiers for ultra-wideband communications. McGraw-Hill Professional, New YorkGoogle Scholar
  16. 16.
    Grebennikov A, Kumar N, Yarman BS (2017) Broadband RF and microwave amplifiers. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Fritsche D, Tretter G, Carta C, Ellinger F (2015) Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS. IEEE Trans Microw Theory Tech 63:1910–1922CrossRefGoogle Scholar
  18. 18.
    Božanić M, Sinha S (2019) Systems-level packaging for millimeter-wave transceivers. Springer, BerlinGoogle Scholar
  19. 19.
    Wu P, Liu F, Li J, Chen C, Hou F, Cao L et al (2017) Design and implementation of a rigid-flex RF front-end system-in-package. Microsyst Technol 23:4579–4589CrossRefGoogle Scholar
  20. 20.
    Ludwig R, Bretchko P (2000) RF circuit design: theory and applications. Pearson Education, LondonGoogle Scholar
  21. 21.
    Odyniec M (2002) RF and microwave oscillator design. Artech House, NorwoodGoogle Scholar
  22. 22.
    Grebennikov A (2007) RF and microwave transistor oscillator design. Wiley, New YorkGoogle Scholar
  23. 23.
    Imani A, Hashemi H (2018) Frequency and power scaling in mm-wave colpitts oscillators. IEEE J Solid-State Circuits 53:1338–1347CrossRefGoogle Scholar
  24. 24.
    Momeni O, Afshari E (2011) High power terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J Solid-State Circuits 46:583–597CrossRefGoogle Scholar
  25. 25.
    Yang X, Matthaiou M, Yang J, Wen C, Gao F, Jin S (2019) Hardware-constrained millimeter-wave systems for 5G: challenges, opportunities, and solutions. IEEE Commun Mag 57:44–50CrossRefGoogle Scholar
  26. 26.
    Everard J (2001) Fundamentals of RF circuit design: with low noise oscillators. Wiley, New YorkGoogle Scholar
  27. 27.
    Yeo KS, Ma K (2018) Low-power wireless communication circuits and systems: 60 GHz and beyond. CRC Press, Boca RatonGoogle Scholar
  28. 28.
    Pan D, Duan Z, Huang L, Wang Y, Zhou Y, Wu B et al (2018) A 76–81 GHz CMOS down-conversion mixer for automotive radar. In: 2018 International conference on IC design technology (ICICDT), pp 73–76Google Scholar
  29. 29.
    Lu M-C, Chang J-F, Lu L-C, Lin Y-S (2009) Miniature 60‐GHz‐B and bandpass filter with 2.55‐dB insertion‐loss using standard 0.13 μm CMOS technology. Microw Opt Technol Lett (cited 9 Aug 2019)Google Scholar
  30. 30.
    Chaturvedi S, Bozanic M, Sinha S (2017) A 50 GHz SiGe BiCMOS active bandpass filter. In: 2017 IEEE 20th international symposium on design and diagnostics of electronic circuits & systems (DDECS), DresdenGoogle Scholar
  31. 31.
    Chaturvedi S, Bozanic M, Sinha S (2019) 60 GHz BiCMOS active bandpass filters. Microelectron J 90:315–322Google Scholar
  32. 32.
    Razavi B (2009) Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans Circuits Syst I Regul Pap 56:4–16MathSciNetCrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of JohannesburgJohannesburgSouth Africa

Personalised recommendations