Advertisement

Device Scaling: Going from “Micro-” to “Nano-” Electronics

  • Mladen BožanićEmail author
  • Saurabh Sinha
Chapter
  • 48 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 658)

Abstract

Research, design and innovation in the scope of the millimeter-wave, and more recently, terahertz circuits have all been driven by the ever-increasing need of humanity to stay connected in the age of cellphones, computers, wearables, smart vehicles, internet of things (IoT) (Chevalier et al. in Proc IEEE 105:1035–1050 [1]) and fourth industrial revolution (Industry 4.0) (Lambrechts and Sinha in 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), pp 1–6 [2]).

References

  1. 1.
    Chevalier P, Schröter M, Bolognesi CR, d’Alessandro V, Alexandrova M, Böck J et al (2017) Si/SiGe: C and InP/GaAsSb heterojunction bipolar transistors for THz applications. Proc IEEE 105:1035–1050CrossRefGoogle Scholar
  2. 2.
    Lambrechts JW, Sinha S (2018) Scaling education in emerging markets to participate in industry 4.0. 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), 2018, pp 1–6Google Scholar
  3. 3.
    Abbas T, Qamar F, Ahmed I, Dimyati K, Majed MB (2017) Propagation channel characterization for 28 and 73 GHz millimeter-wave 5G frequency band. In: 2017 IEEE 15th Student Conference on Research and Development (SCOReD), 2017, pp 297–302Google Scholar
  4. 4.
    Hsiao Y, Chang Y, Tsai C, Huang T, Aloui S, Huang D et al (2016) A 77-GHz 2T6R transceiver with injection-lock frequency sextupler using 65-nm CMOS for automotive radar system application. IEEE Trans Microw Theory Tech 64:3031–3048CrossRefGoogle Scholar
  5. 5.
    Hasch J, Topak E, Schnabel R, Zwick T, Weigel R, Waldschmidt C (2012) Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Tech 60:845–860CrossRefGoogle Scholar
  6. 6.
    Pisek E, Abu-Surra S, Mott J, Henige T, Sharma R (2014) High throughput millimeter-Wwave MIMO beamforming system for short range communication. In: 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), 2014, pp 537–543Google Scholar
  7. 7.
    Božanić M, Sinha S (2019) Systems-level packaging for millimeter-wave transceivers. SpringerGoogle Scholar
  8. 8.
    Rappaport TS, Murdock JN, Gutierrez F (2011) State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc IEEE 99:1390–1436CrossRefGoogle Scholar
  9. 9.
    Appleby R, Anderton RN (2007) Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc IEEE 95:1683–1690CrossRefGoogle Scholar
  10. 10.
    Shan W, Yang J, Shi S, Yao Q, Zuo Y, Lin Z et al (2012) Development of superconducting spectroscopic array receiver: a multibeam 2SB SIS receiver for millimeter-wave radio astronomy. IEEE Trans Terahertz Sci Technol 2:593–604CrossRefGoogle Scholar
  11. 11.
    Tang A, Kim Y, Xu Y, Virbila G, Reck T, Chang MF (2017) Evaluation of 28 nm CMOS receivers at 183 GHz for space-borne atmospheric remote sensing. IEEE Microwave Wirel Compon Lett 27:100–102CrossRefGoogle Scholar
  12. 12.
    Zhou Z, Cao Z, Pi Y (2018) Dynamic gesture recognition with a terahertz radar based on range profile sequences and doppler signatures. Sensors 18:10CrossRefGoogle Scholar
  13. 13.
    Božanić M, Sinha S (2019) Emerging transistor technologies capable of terahertz amplification: a way to re-engineer terahertz radar sensors. Sensors 19:2454CrossRefGoogle Scholar
  14. 14.
    Urteaga M, Griffith Z, Seo M, Hacker J, Rodwell MJW (2017) InP HBT technologies for THz integrated circuits. Proc IEEE 105:1051–1067CrossRefGoogle Scholar
  15. 15.
    Lachner R (2014) towards 0.7 Terahertz Silicon Germanium heterojunction bipolar technology—the DOTSEVEN project. ECS Trans 64:21–37Google Scholar
  16. 16.
    Rodwell MJW, Le M, Brar B (2008) InP bipolar ICs: scaling roadmaps, frequency limits, manufacturable technologies. Proc IEEE 96:271–286CrossRefGoogle Scholar
  17. 17.
    Schröter M, Rosenbaum T, Chevalier P, Heinemann B, Voinigescu SP, Preisler E et al (2017) SiGe HBT technology: future trends and TCAD-based roadmap. Proc IEEE 105:1068–1086CrossRefGoogle Scholar
  18. 18.
    Schroter M, Wedel G, Heinemann B, Jungemann C, Krause J, Chevalier P et al (2011) Physical and electrical performance limits of high-speed SiGeC HBTs —part I: vertical scaling. IEEE Trans Electron Dev 58:3687–3696CrossRefGoogle Scholar
  19. 19.
    Schroter M, Krause J, Rinaldi N, Wedel G, Heinemann B, Chevalier P et al (2011) Physical and electrical performance limits of high-speed Si GeC HBTs—part II: lateral scaling. IEEE Trans Electron Dev 58:3697–3706CrossRefGoogle Scholar
  20. 20.
    Inac O, Uzunkol M, Rebeiz GM (2014) 45-nm CMOS SOI technology characterization for millimeter-wave applications. IEEE Trans Microw Theory Tech 62:1301–1311CrossRefGoogle Scholar
  21. 21.
    Božanić M, Sinha S (2018) A survey of current trends in master’s programs in microelectronics. IEEE Trans Educ 61:151–157CrossRefGoogle Scholar
  22. 22.
    Hodges D, Jackson H, Saleh R (2003) Analysis and design of digital integrated circuits. McGraw-Hill Companies, IncorporatedGoogle Scholar
  23. 23.
    Manolov ED (2015) Graphical representations for analog IC design in deep and ultra-deep submicron CMOS. In: Proceedings of XXIV international conference “Electronics-ET2015”, Sozopol, Bulgaria, 2015Google Scholar
  24. 24.
    Liu X, Ma G, Shao J, Yang Z, Wang G (2009) Interconnect crosstalk noise evaluation in deep-submicron technologies. Microelectron Reliab 49:170–177CrossRefGoogle Scholar
  25. 25.
    Božanić M, Sinha S (2015) Power amplifiers for the S-, C-, X- and Ku-bands: an EDA perspective. SpringerGoogle Scholar
  26. 26.
    du Preez J, Sinha S (2017) Millimeter-wave power amplifiers. SpringerGoogle Scholar
  27. 27.
    du Preez J, Sinha S (2016) Millimeter-wave antennas: configurations and applications. SpringerGoogle Scholar
  28. 28.
    Chaturvedi S, Bozanic M, Sinha S (2017) Millimeter wave passive bandpass filters. Microwave J, vol 60Google Scholar
  29. 29.
    Chaturvedi S, Božanic M, Sinha S (2017) Millimeter wave active bandpass filters. Microwave J, vol 60Google Scholar
  30. 30.
    Božanić M, Sinha S (2017) Millimeter-wave low noise amplifiers. SpringerGoogle Scholar
  31. 31.
    Rinaldi N, Schröter M (2018) Silicon-Germanium heterojunction bipolar transistors for mm-wave systems: technology, modeling and circuit applications. River PublishersGoogle Scholar
  32. 32.
    Deal W, Mei XB, Leong KMKH, Radisic V, Sarkozy S, Lai R (2011) THz monolithic integrated circuits using InP high electron mobility transistors. IEEE Trans Terahertz Sci Technol 1:25–32CrossRefGoogle Scholar
  33. 33.
    Yuan J (2013) Using temperature to explore the scaling limits of SiGe HBTs. In: Extreme environment electronics. CRC Press, Boca RatonGoogle Scholar
  34. 34.
    Antonopoulos A, Bucher M, Papathanasiou K, Mavredakis N, Makris N, Sharma RK et al (2013) CMOS small-signal and thermal noise modeling at high frequencies. IEEE Trans Electron Dev 60:3726–3733CrossRefGoogle Scholar
  35. 35.
    Mei X, Yoshida W, Lange M, Lee J, Zhou J, Liu P et al (2015) First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron Dev Lett 36:327–329CrossRefGoogle Scholar
  36. 36.
    Heinemann B, Rücker H, Barth R, Bärwolf F, Drews J, Fischer GG, et al (2016) SiGe HBT with fT/fmax of 505 GHz/720 GHz. In: 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp 3.1.1–3.1.4Google Scholar
  37. 37.
    Nishi Y, Doering R (2017) Handbook of semiconductor manufacturing technology. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Parlak M, Buckwalter JF (2013) A passive I/Q millimeter-wave mixer and switch in 45-nm CMOS SOI. IEEE Trans Microw Theory Tech 61:1131–1139CrossRefGoogle Scholar
  39. 39.
    Kushwaha P, Khandelwal S, Duarte JP, Hu C, Chauhan YS (2016) RF modeling of FDSOI transistors using industry standard BSIM-IMG model. IEEE Trans Microw Theory Tech 64:1745–1751CrossRefGoogle Scholar
  40. 40.
    Gianesello F, Gloria D, Montusclat S, Raynaud C, Boret S, Dambrine G et al (2017) 1.8 dB insertion loss 200 GHz CPW band pass filter integrated in HR SOI CMOS technology. In: 2007 IEEE/MTT-S international microwave symposium, 2007, pp 453–456Google Scholar
  41. 41.
    Roodaki PM, Taghian F, Bashirzadeh S, Jalaali M (2011) A survey of millimeter-wave technologies. In: 2011 international conference on electrical and control engineering, 2011, pp 5726–5728Google Scholar
  42. 42.
    Kazimierczuk MK (2014) RF power amplifiers. WileyGoogle Scholar
  43. 43.
    Zhou X, Chiah SB, Lim KY (2004) A compact deep-submicron MOSFET GDS model including hot-electron and thermoelectric effects. Solid-State Electron 48:2125–2131CrossRefGoogle Scholar
  44. 44.
    Ndjountche T (2018) Amplifiers, comparators, multipliers, filters, and oscillators. CRC Press, Boca RatonCrossRefGoogle Scholar
  45. 45.
    Inac O, Cetinoneri B, Uzunkol M, Atesal YA, Rebeiz GM (2011) Millimeter-wave and THz circuits in 45-nm SOI CMOS. In: 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2011, pp 1–4Google Scholar
  46. 46.
    Li Z, Ma J, Ye Y, Yu M (2009) Compact channel noise models for deep-submicron MOSFETs. IEEE Trans Electron Dev 56:1300–1308CrossRefGoogle Scholar
  47. 47.
    Ong SN, Yeo KS, Chew KWJ, Chan LHK, Loo XS, Boon CC et al (2012) Impact of velocity saturation and hot carrier effects on channel thermal noise model of deep sub-micron MOSFETs. Solid-State Electron 72:8–11CrossRefGoogle Scholar
  48. 48.
    Sze SM, Ng KK (2006) Physics of semiconductor devices. WileyGoogle Scholar
  49. 49.
    Ture E, Brückner P, Godejohann B, Aidam R, Alsharef M, Granzner R et al (2016) High-current submicrometer Tri-Gate GaN high-electron mobility transistors with binary and quaternary barriers. IEEE J Electron Dev Soc 4:1–6CrossRefGoogle Scholar
  50. 50.
    Gray PR, Hurst P, Meyer RG, Lewis S (2009) Analysis and design of analog integrated circuits. WileyGoogle Scholar
  51. 51.
    Lee TH (2003) The design of CMOS radio-frequency integrated circuits. Cambridge University PressGoogle Scholar
  52. 52.
    Hastings RA (2006) The art of analog layout. Pearson Prentice HallGoogle Scholar
  53. 53.
    Sedra AS, Smith KC (2013) Microelectronic circuits, 6th edn. Oxford University PressGoogle Scholar
  54. 54.
    Neamen DA (2007) Microelectronics: circuit analysis and design. McGraw-HillGoogle Scholar
  55. 55.
    Akis R, Faralli N, Ferry DK, Goodnick SM, Phatak KA, Saraniti M (2009) Ballistic transport in InP-based HEMTs. IEEE Trans Electron Dev 56:2935–2944CrossRefGoogle Scholar
  56. 56.
    Kalra S, Bhattacharyya A (2018) Scalable α-power law based MOSFET model for characterization of ultra deep submicron digital integrated circuit design. AEU—Int J Electron Commun 83:180–187CrossRefGoogle Scholar
  57. 57.
    Shen J, Zhang M, Tan C, Fan X, Li W (2017) Research on hot carrier reliability of n-MOSFET in deep submicron technology. In: 2017 IEEE 17th International Conference on Communication Technology (ICCT), 2017, pp 1778–1781Google Scholar
  58. 58.
    Tinoco JC, Raskin J-P (2010) New RF extrinsic resistances extraction procedure for deep-submicron MOS transistors. Int J Numer Model Electron Netw Dev Fields 23:107–126zbMATHGoogle Scholar
  59. 59.
    Arutyunyan SS, Pavlov AYu, Pavlov BYu, Tomosh KN, Fedorov YuV (2016) On a two-layer Si3N4/SiO2 dielectric mask for low-resistance ohmic contacts to AlGaN/GaN HEMTs. Semiconductors 50:1117–1121Google Scholar
  60. 60.
    Dhakad S, Sharma N, Periasamy C, Chaturvedi N (2017) Optimization of ohmic contacts on thick and thin AlGaN/GaN HEMTs structures. Superlattices Microstruct 111:922–926CrossRefGoogle Scholar
  61. 61.
    Grebennikov A, Kumar N, Yarman BS (2017) Broadband RF and microwave amplifiers. CRC Press, Boca RatonCrossRefGoogle Scholar
  62. 62.
    Hasani JY (2016) Three-port model of a modern MOS transistor in millimeter wave band, considering distributed effects. IEEE Trans Comput Aided Des Integr Circuits Syst 35:1509–1518CrossRefGoogle Scholar
  63. 63.
    Robertson I, Somjit N, Chongcheawchamnan M (2016) Microwave and millimetre-wave design for wireless communications. WileyGoogle Scholar
  64. 64.
    Arora R (2013) Trade-offs between performance and reliability in sub-100 nm RF-CMOS on SOI technologies. Extreme environment electronics. CRC Press, Boca RatonGoogle Scholar
  65. 65.
    Fletcher ASA, Nirmal D (2017) a survey of Gallium Nitride HEMT for RF and high power applications. Superlattices Microstruct 109:519–537CrossRefGoogle Scholar
  66. 66.
    Weimann NG, Stoppel D, Schukfeh MI, Hossain M, Al‐Sawaf T, Janke B et al (2016) SciFab—a wafer-level heterointegrated InP DHBT/SiGe BiCMOS foundry process for mm-wave applications. Physica Status Solidi (a) 213:909–916Google Scholar
  67. 67.
    Lambrechts W, Sinha S (2016) SiGe-based re-engineering of electronic warfare subsystems. SpringerGoogle Scholar
  68. 68.
    Ryndin EA, Al-Saman AA, Konoplev BG (2019) A quasi-two-dimensional physics-based model of HEMTs without smoothing functions for joining linear and saturation regions of I-V characteristics [Internet]. Active and passive electronic components. 2019 [cited 16 Apr 2019]. Available from https://www.hindawi.com/journals/apec/2019/5135637/abs/
  69. 69.
    Zhang H, Ma P, Lu Y, Zhao B, Zheng J, Ma X et al (2017) Extraction method for parasitic capacitances and inductances of HEMT models. Solid-State Electron 129:108–113CrossRefGoogle Scholar
  70. 70.
    Alim MA, Rezazadeh AA (2018) Device behaviour and zero temperature coefficients analysis for microwave GaAs HEMT. Solid-State Electron 147:13–18CrossRefGoogle Scholar
  71. 71.
    Alshahed M, Heuken L, Alomari M, Cora I, Tóth L, Pècz B et al (2018) Low-dispersion, high-voltage, low-leakage GaN HEMTs on native GaN substrates. IEEE Trans Electron Dev 65:2939–2947CrossRefGoogle Scholar
  72. 72.
    Jarndal A, Ghannouchi FM (2016) Improved modeling of GaN HEMTs for predicting thermal and trapping-induced-kink effects. Solid-State Electron 123:19–25CrossRefGoogle Scholar
  73. 73.
    Samoska LA (2011) An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans Terahertz Sci Technol 1:9–24CrossRefGoogle Scholar
  74. 74.
    Awano Y, Kosugi M, Kosemura K, Mimura T, Abe M (1989) Short-channel effects in subquarter-micrometer-gate HEMTs: simulation and experiment. IEEE Trans Electron Dev 36:2260–2266CrossRefGoogle Scholar
  75. 75.
    Guerra D, Akis R, Marino FA, Ferry DK, Goodnick SM, Saraniti M (2010) Aspect ratio impact on RF and DC performance of state-of-the-art short-channel GaN and InGaAs HEMTs. IEEE Electron Dev Lett 31:1217–1219Google Scholar
  76. 76.
    Malmros A, Gamarra P, Thorsell M, Hjelmgren H, Lacam C, Delage SL et al (2019) Impact of channel thickness on the large-signal performance in InAlGaN/AlN/GaN HEMTs with an AlGaN Back Barrier. IEEE Trans Electron Dev 66:364–371CrossRefGoogle Scholar
  77. 77.
    Alsharef M, Granzner R, Schwierz F, Ture E, Quay R, Ambacher O (2016) Performance of Tri-Gate AlGaN/GaN HEMTs. In: 2016 46th European Solid-State Device Research Conference (ESSDERC), 2016, pp 176–179Google Scholar
  78. 78.
    Alsharef MA, Granzner R, Schwierz F (2013) Theoretical investigation of Trigate AlGaN/GaN HEMTs. IEEE Trans Electron Dev 60:3335–3341CrossRefGoogle Scholar
  79. 79.
    Belarbi A, Hamdoune A (2019) Numerical simulation and comparative assessment of DG-HEMT device for high-frequency application. Int J Nanoelectron Mater, p 12Google Scholar
  80. 80.
    Hashizume T, Nishiguchi K, Kaneki S, Kuzmik J, Yatabe Z (2018) State of the art on gate insulation and surface passivation for GaN-based power HEMTs. Mater Sci Semicond Proc 78:85–95CrossRefGoogle Scholar
  81. 81.
    Rodríguez R, González B, García J, Núñez A (2017) Electrothermal DC characterization of GaN on Si MOS-HEMTs. Solid-State Electron 137:44–51CrossRefGoogle Scholar
  82. 82.
    Touati Z, Hamaizia Z, Messai Z. DC and RF (2015) Characteristics of AlGaN/GaN HEMT and MOS-HEMT. In: 2015 4th International Conference on Electrical Engineering (ICEE), 2015, pp 1–4Google Scholar
  83. 83.
    Chevalier P, Liebl W, Rucker H, Gauthier A, Manger D, Heinemann B et al (2018) SiGe BiCMOS current status and future trends in Europe. In: 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS) [Internet]. IEEE, San Diego, CA, 2018 [cited 23 Apr 2019], pp 64–71. Available from https://ieeexplore.ieee.org/document/8550963/
  84. 84.
    Nardmann T, Sakalas P, Chen F, Rosenbaum T, Schroter M (2013) A geometry scalable approach to InP HBT compact modeling for mm-wave applications. In: 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) [Internet]. IEEE, Monterey, CA, USA, 2013 [cited 21 Feb 2019], pp 1–4. Available from http://ieeexplore.ieee.org/document/6659200/
  85. 85.
    Nardmann T, Krause J, Pawlak A, Schroter M (2016) Determining the base resistance of InP HBTs: an evaluation of methods and structures. Solid-State Electron 123:68–77CrossRefGoogle Scholar
  86. 86.
    Urteaga M, Hacker J, Griffith Z, Young A, Pierson R, Rowell P et al (2016) A 130 nm InP HBT integrated circuit technology for THz electronics. In: 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp 29.2.1–29.2.4Google Scholar
  87. 87.
    Joseph A, Jain V, Ong SN, Wolf R, Lim SF, Singh J (2018) Technology positioning for mm wave applications: 130/90 nm SiGe BiCMOS vs. 28 nm RFCMOS. In: 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2018, pp 18–21Google Scholar
  88. 88.
    Jaoul M, Maneux C, Céli D, Schröter M, Zimmer T (2019) A compact formulation for avalanche multiplication in SiGe HBTs at high injection levels. IEEE Trans Electron Dev 66:264–270CrossRefGoogle Scholar
  89. 89.
    Chakraborty PS, Moen KA, Cressler JD (2013) An investigation on the optimization and scaling of complementary SiGe HBTs. IEEE Trans Electron Dev 60:34–41CrossRefGoogle Scholar
  90. 90.
    d’Alessandro V, Sasso G, Rinaldi N, Aufinger K (2014) Influence of scaling and emitter layout on the thermal behavior of toward-THz SiGe: C HBTs. IEEE Trans Electron Dev 61:3386–3394CrossRefGoogle Scholar
  91. 91.
    Schmid RL, Ulusoy AÇ, Zeinolabedinzadeh S, Cressler JD (2015) A comparison of the degradation in RF performance due to device interconnects in advanced SiGe HBT and CMOS technologies. IEEE Trans Electron Dev 62:1803–1810CrossRefGoogle Scholar
  92. 92.
    Cressler JD (2013) A retrospective on the SiGe HBT: what we do know, what we don’t know, and what we would like to know better. In: 2013 IEEE 13th topical meeting on silicon monolithic integrated circuits in RF systems, 2013, pp 81–83Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of JohannesburgJohannesburgSouth Africa

Personalised recommendations