Advertisement

Discriminative Representation Learning for Face Recognition

  • Chia-Hao Tang
  • Gee-Sern Jison HsuEmail author
Conference paper
  • 84 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1153)

Abstract

A significant progress has been made on face recognition in recent years because of the rapid development of deep learning approaches. Deep learning approaches offer a powerful toolbox for tackling many aspects of face recognition, including the search for effective discriminative features. We compare several state-of-the-art face recognition methods and combine different modules from those methods to propose a special approach for discriminative representation learning. Our approach has a special architecture for representation learning combined with a latest design of classification loss function, making it a highly effective solution for uncontrolled face recognition. Experimented on the Labeled Faces in the Wild (LFW), the Celebrities in Frontal-Profile dataset (CFP), and the AgeDB datasets, our approach shows competitive performance to other state-of-the-art methods.

Keywords

Face recognition Deep learning Representation learning 

References

  1. 1.
    Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: ICCV (2017)Google Scholar
  2. 2.
    Cao, K., Rong, Y., Li, C., Tang, X., Change Loy, C.: Pose-robust face recognition via deep residual equivariant mapping. In: CVPR (2018)Google Scholar
  3. 3.
    Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: FG (2018)Google Scholar
  4. 4.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  5. 5.
    Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR (2019)Google Scholar
  6. 6.
    Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. arXiv (2013)Google Scholar
  7. 7.
    Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition (2016)Google Scholar
  8. 8.
    Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: CVPR (2017)Google Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015)Google Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)Google Scholar
  11. 11.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)Google Scholar
  12. 12.
    Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2008)Google Scholar
  13. 13.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv (2015)Google Scholar
  14. 14.
    Kang, B.-N., Kim, Y., Kim, D.: Pairwise relational networks for face recognition. In: ECCV (2018)Google Scholar
  15. 15.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)Google Scholar
  16. 16.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)Google Scholar
  17. 17.
    Lin, M., Chen, Q., Yan, S.: Network in network. arXiv (2013)Google Scholar
  18. 18.
    Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: CVPR (2017)Google Scholar
  19. 19.
    Masi, I., Chang, F.-J., Choi, J., Harel, S., Kim, J., Kim, K., Leksut, J., Rawls, S., Wu, Y., Hassner, T., et al.: Learning pose-aware models for pose-invariant face recognition in the wild. TPAMI 41, 379–393 (2018)CrossRefGoogle Scholar
  20. 20.
    Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: CVPRW (2017)Google Scholar
  21. 21.
    Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: BMVC (2015)Google Scholar
  22. 22.
    Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. arXiv (2017)Google Scholar
  23. 23.
    Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained softmax loss for discriminative face verification. arXiv (2017)Google Scholar
  24. 24.
    Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)Google Scholar
  25. 25.
    Sengupta, S., Chen, J.-C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: WACV (2016)Google Scholar
  26. 26.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv (2014)Google Scholar
  27. 27.
    Song, L., Gong, D., Li, Z., Liu, C., Liu, W.: Occlusion robust face recognition based on mask learning with pairwise differential Siamese network. In: ICCV (2019)Google Scholar
  28. 28.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)Google Scholar
  29. 29.
    Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Sig. Process. Lett. 25, 926–930 (2018)CrossRefGoogle Scholar
  30. 30.
    Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: CosFace: large margin cosine loss for deep face recognition. In: CVPR (2018)Google Scholar
  31. 31.
    Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: ECCV (2016)Google Scholar
  32. 32.
    Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity (2011)Google Scholar
  33. 33.
    Wu, X.: Learning robust deep face representation. arXiv (2015)Google Scholar
  34. 34.
    Wu, X., He, R., Sun, Z.: A lightened CNN for deep face representation. arXiv (2015)Google Scholar
  35. 35.
    Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13, 2884–2896 (2018)CrossRefGoogle Scholar
  36. 36.
    Yang, J., Ren, P., Zhang, D., Chen, D., Wen, F., Li, H., Hua, G.: Neural aggregation network for video face recognition. In: CVPR (2017)Google Scholar
  37. 37.
    Yin, B., Tran, L., Li, H., Shen, X., Liu, X.: Towards interpretable face recognition. In: ICCV (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations