Advertisement

RDB-FSU: Residual Dense Network with Feature Selection Unit for Image Super Resolution

  • M. HaithamEmail author
  • Alaa Zaghloul
  • Mostafa AbdEl-Azeem
Conference paper
  • 65 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1153)

Abstract

After the great success of deep convolution neural network (DCNN). In practical, residual and dense networks. Most deep methods do not make full use of features from the original low-resolution (LR) images. This paper proposed a novel residual in dense network with feature selection unit (RDB-FSU) that tackle this problem in both image and video SR. RDB-FSU fully use the features from all the convolution layers. Specifically, the residual dense block (RDB) presented to extract features via dense connected convolution layers. Then feature selection unit (FSU) is adaptively learn more effective features from extracted features to be up scaled using pixel-shuffle module. Extensive experiments with various models show that the presented RDB-FSU fulfills appropriate performance versus state-of-the-art techniques on both image and video benchmark dataset.

Keywords

Deep learning Super resolution Residual in residual Dense block 

References

  1. 1.
    Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference Computer Vision Workshop (2018)Google Scholar
  2. 2.
    Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Proceedings of ECCV (2014)Google Scholar
  3. 3.
    Dong, C., Loy, C.C., Tang, X.: Accelerating the super resolution convolutional neural network. In: Proceedings of ECCV (2016)Google Scholar
  4. 4.
    Caballero, J., Ledig, C., Aitken, A.P., Acosta, A., Totz, J., Wang, Z., Shi, W.: Real-time video super-resolution with spatiotemporal networks and motion compensation. In: Proceedings of CVPR (2017)Google Scholar
  5. 5.
    Wang, Y., Perazzi, F., McWilliams, B., Sorkine-Hornung, A., Sorkine-Hornung, O., Schroers, C.: A fully progressive approach to single-image super-resolution. In: Proceedings of CVPRW (2018)Google Scholar
  6. 6.
    Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: Proceedings of ICCV (2015)Google Scholar
  7. 7.
    Lai, W.-S., Huang, J.-B., Ahuja, N., Yang, M.-H.: Fast and accurate image super-resolution with deep Laplacian Pyramid networks. In: Proceedings of TPAMI (2018)Google Scholar
  8. 8.
    Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of CVPR (2018)Google Scholar
  9. 9.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (2015)Google Scholar
  10. 10.
    Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of CVPRW (2017)Google Scholar
  11. 11.
    Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L., Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M., et al.: NTIRE 2017 challenge on single image super resolution: methods and results. In: CVPRW (2017)Google Scholar
  12. 12.
    Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of BMVC (2012)Google Scholar
  13. 13.
    Zeyde, R., Elad, M., Protter, M.: On single image scale up using sparse-representations. In: International Conference on Curves and Surfaces (2010)Google Scholar
  14. 14.
    Huang, J.-B., Singh, A., Ahuja, N.: Single image super resolution from transformed self-exemplars. In: Proceedings of CVPR (2015)Google Scholar
  15. 15.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of ICCV (2001)Google Scholar
  16. 16.
    Liu, C., Sun, D.: On Bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 346–360 (2014)CrossRefGoogle Scholar
  17. 17.
    Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super resolution using very deep convolutional networks. In: Proceedings of CVPR (2016)Google Scholar
  18. 18.
    Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of CVPR (2017)Google Scholar
  19. 19.
    Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of CVPRW (2017)Google Scholar
  20. 20.
    Li, Q., Li, Z., Lu, L., Jeon, G., Liu, K., Yang, X.: Gated multiple feedback network for image super-resolution. In: Proceedings of BMVC (2019)Google Scholar
  21. 21.
    Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: Proceedings of CVPR (2019)Google Scholar
  22. 22.
    Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of ECCV (2018)Google Scholar
  23. 23.
    Liu, D., Wang, Z., Fan, Y., Liu, X., Wang, Z., Chang, S., Huang, T.: Robust video super-resolution with learned temporal dynamics. In: Proceedings of ICCV (2017)Google Scholar
  24. 24.
    Caballero, J., Ledig, C., Aitken, A.P., Acosta, A., Totz, J., Wang, Z., Shi, W.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings of IEEE (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Haitham
    • 1
    Email author
  • Alaa Zaghloul
    • 1
  • Mostafa AbdEl-Azeem
    • 2
  1. 1.MUST University6th OctoberEgypt
  2. 2.AASTMTHeliopolisEgypt

Personalised recommendations