Brain Tumor Segmentation in 3D-MRI Based on Artificial Bee Colony and Level Set

  • Yasmine Mahmoud IbrahimEmail author
  • Saad Darwish
  • Walaa Sheta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1153)


Medical imaging technologies developed to satisfy the significant need for information on medical imaging by visualizing internal organs like tumors help the radiologists to extract critical clinical data accurately. Brain tumor segmentation is very needed for a contemporaneous planning system for brain surgery. This paper offers a quick and accurate level set segmentation using a Modified Artificial Bee Colony (ABC) clustering technique to extract the tumor. In ABC, the food source initial position is identified using k-means rather than random initialization. The suggested model calculates the centroids of clusters and utilizes level set segmentation to handle topological changes of contours as the brain tumors vary in their form, structure, and size. Our model consists of an initial, pre-processing step to extract the brain from the head and enhances contrast stretching. Second, two-step ABC is employed to extract tumor edges, which will be used as an initial contour of the Magnetic Resonance Images (MRI) sequence. In the last step, the level set segment is employed to extract the tumor region from all volume slices with a fewer number of iterations. The experimental results using the benchmark BraTs’2017 dataset confirm the accuracy of the suggested model.


Artificial Bee Colony (ABC) Clustering Level set segmentation 3D-MRI Initial contour Two-step 


  1. 1.
    El-Melegy, M.T., Abo El-Magd, K.M., Ali, S.A., Hussain, K.F., Mahdy, Y.B.: Ensemble of multiple classifiers for automatic multimodal brain tumor segmentation. In: International Conference on Innovative Trends in Computer Engineering (ITCE), Egypt (2019)Google Scholar
  2. 2.
    Aparna, R.M., Shanmugavadivu, P.: A survey of medical imaging, storage and transfer techniques. In: Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018, pp. 17–29 (2019)Google Scholar
  3. 3.
    Popoola, J.J., Godson, T.E., Olasoji, Y.O., Adu, M.R.: Study on capabilities of different segmentation algorithms in detecting and reducing brain tumor size in magnetic resonance imaging for effective telemedicine services. Eur. J. Eng. Res. Sci. 4(2), 23–29 (2019)CrossRefGoogle Scholar
  4. 4.
    Işın, A., Direkoğlu, C., Şah, M.: Review of MRI-based brain tumor image segmentation using deep learning methods. Proc. Comput. Sci. 102, 317–324 (2016)CrossRefGoogle Scholar
  5. 5.
    Angulakshmi, M., Priya, G.L.: Automated brain tumour segmentation techniques- a review. Int. J. Imaging Syst. Technol. 27(1), 66–77 (2017)CrossRefGoogle Scholar
  6. 6.
    Mostafa, A.: CT liver segmentation using artificial bee colony optimisation. Proc. Comput. Sci. 60, 1622–1630 (2015)CrossRefGoogle Scholar
  7. 7.
    Akay, B., Karaboga, D.: A survey on the applications of artificial bee colony in signal, image, and video processing. SIViP 9(4), 967–990 (2015)CrossRefGoogle Scholar
  8. 8.
    Alqazzaz, S., Sun, X., Yang, X., Nokes, L.: Automated brain tumor segmentation on multi-modal MR image using SegNet. Comput. Vis. Media 5(2), 209–219 (2019)CrossRefGoogle Scholar
  9. 9.
    Kermi, A., Andjouh, K., Zidane, F.: Fully automated brain tumor segmentation system in 3D-MRI using symmetry analysis of brain and level-sets. IET Image Proc. 12(11), 1964–1971 (2018)CrossRefGoogle Scholar
  10. 10.
    Bal, A., Banerjee, M., Chakrabarti, A., Sharma, P.: MRI brain tumor segmentation and analysis using rough-fuzzy C-means and shape based properties. J. King Saud Univ. – Comput. Inform. Sci. (2018)Google Scholar
  11. 11.
    Hasan, S., Ahmad, M.: Correction to: two-step verification of brain tumor segmentation using watershed-matching algorithm. Brain Inform. 5(2), 8 (2018)CrossRefGoogle Scholar
  12. 12.
    Chen, S., Ding, C., Liu, M.: Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn. 88, 90–100 (2019)CrossRefGoogle Scholar
  13. 13.
    Anitha, V., Murugavalli, S.: Brain tumour classification using two-tier classifier with adaptive segmentation technique. IET Comput. Vis. 10(10), 9–17 (2018)Google Scholar
  14. 14.
    Virupakshappa, Amarapur, B.: Cognition-based MRI brain tumor segmentation technique using modified level set method. Cogn. Technol. Work 21(3), 357–369 (2018)CrossRefGoogle Scholar
  15. 15.
    Mahalakshmi, Krishnappa, H., Jayadevappa, D.: A hybrid approach for the segmentation of brain tumor using k-means clustering and variational level set. J. Adv. Res. Dyn. Control Syst. 10(5), 258–264 (2018)Google Scholar
  16. 16.
    Hancer, E., Ozturk, C., Karaboga, D.: Artificial bee colony based image clustering method. In: IEEE Congress on Evolutionary Computation, Brisbane, Australia, pp. 10–15 (2012)Google Scholar
  17. 17.
    Kumar, Y., Sahoo, G.: A two-step artificial bee colony algorithm for clustering. Neural Comput. Appl. 28(3), 537–551 (2015)CrossRefGoogle Scholar
  18. 18.
    Gao, W., Liu, S., Huang, L.: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cybern. 43(3), 1011–1024 (2013)CrossRefGoogle Scholar
  19. 19.
    Chang, D., Zhang, X., Zheng, C.: A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recogn. 42(7), 1210–1222 (2009)CrossRefGoogle Scholar
  20. 20.
    Kang, F., Li, J., Li, H.: Artificial bee colony algorithm and pattern search hybridized for global optimization. Appl. Soft Comput. 13(4), 1781–1791 (2013)CrossRefGoogle Scholar
  21. 21.
    Yan, X., Zhu, Y., Zou, W., Wang, L.: A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97, 241–250 (2012)CrossRefGoogle Scholar
  22. 22.
    Le, T.H.N., Gummadi, R., Savvides, M.: Deep recurrent level set for segmenting brain tumors. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI. LNCS, vol. 11072, pp. 646–653. Springer, Cham (2018)Google Scholar
  23. 23.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 10, 1993–2024 (2015)CrossRefGoogle Scholar
  24. 24.
    James, J.A., Dasarathy, B.: Medical image fusion: a survey of the state of the art. Int. J. Inform. Fusion 19, 4–19 (2014)CrossRefGoogle Scholar
  25. 25.
    Hagwood, C., Bernal, J., Halter, M., Elliott, J.: Evaluation of segmentation algorithms on cell populations using CDF curves. IEEE Trans. Med. Imaging 31(2), 380–390 (2012)CrossRefGoogle Scholar
  26. 26.
    Bal, A., Banerjee, M., Sharma, P., Maitra, M.: Brain tumor segmentation on MR image using K-means and fuzzy-possibilistic clustering. In: 2nd International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech) (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yasmine Mahmoud Ibrahim
    • 1
    Email author
  • Saad Darwish
    • 1
  • Walaa Sheta
    • 2
  1. 1.Department of Information Technology, Institute of Graduate Studies and ResearchAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Information TechnologyInformatics Research Institute City of Scientific Research and Technology ApplicationsBorg EL Arab, AlexandriaEgypt

Personalised recommendations