APPLE: Alias Pruning by Path Length Estimation

  • Alexander MarderEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12048)


Uncovering the Internet’s router graph is vital to accurate measurement and analysis. In this paper, we present a new technique for resolving router IP aliases that complements existing techniques. Our approach, Alias Pruning by Path Length Estimation (apple), avoids relying on router manufacturer and operating system specific implementations of IP. Instead, it filters potential router aliases seen in traceroute by comparing the reply path length from each address to a distributed set of vantage points.

We evaluated our approach on Internet-wide collections of IPv4 and IPv6 traceroutes. We compared apple’s router alias inferences against router configurations from two R&E networks, finding no false positives. Moreover, apple’s coverage of the potential alias pairs in the ground truth networks rivals the current state-of-the-art in IPv4, and far exceeds existing techniques in IPv6. We also show that apple complements existing alias resolution techniques, increasing the total number of inferred alias pairs by 109.6% in IPv4, and by 1071.5% in IPv6.



We thank kc claffy, Matthew Luckie, and Young Hyun for their invaluable feedback. This work was supported by NSF grants OAC-1724853 and OIA-1937165.


  1. 1.
    Internet topology data kit - April 2019. Accessed Apr 2019
  2. 2.
    Internet topology data kit - January 2019. Accessed Jan 2019
  3. 3.
    Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy of a large European IXP. In: ACM SIGCOMM CCR (2012)Google Scholar
  4. 4.
    Amini, L.D., Shaikh, A., Schulzrinne, H.G.: Issues with inferring Internet topological attributes. In: Internet Performance and Control of Network Systems III (2002)Google Scholar
  5. 5.
    Augustin, B., Krishnamurthy, B., Willinger, W.: IXPs: mapped? In: IMC (2009)Google Scholar
  6. 6.
    Baker, F.: RFC 1812: requirements for IP version 4 routers. Technical report, Internet Engineering Task Force (1995)Google Scholar
  7. 7.
    Bender, A., Sherwood, R., Spring, N.: Fixing ally’s growing pains with velocity modeling. In: IMC (2008)Google Scholar
  8. 8.
    Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings, INFOCOM 2000. IEEE (2000)Google Scholar
  9. 9.
    Grailet, J.F., Donnet, B.: Towards a renewed alias resolution with space search reduction and IP fingerprinting. In: Network Traffic Measurement and Analysis Conference (TMA) (2017)Google Scholar
  10. 10.
    Gunes, M.H., Sarac, K.: Resolving IP aliases in building traceroute-based Internet maps. IEEE/ACM Trans. Netw. 17, 1738–1751 (2009)CrossRefGoogle Scholar
  11. 11.
    Hyun, Y., Broido, A., Claffy, K.: On third-party addresses in traceroute paths. In: PAM (2003)Google Scholar
  12. 12.
    Jacobson, V.: Traceroute.
  13. 13.
    Keys, K.: Internet-scale IP alias resolution techniques. ACM SIGCOMM Comput. Commun. Rev. (CCR) 40, 50–55 (2010)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Keys, K., Hyun, Y., Luckie, M., Claffy, K.: Internet-scale IPv4 alias resolution with MIDAR. IEEE/ACM Trans. Netw. 21, 383–399 (2013)CrossRefGoogle Scholar
  16. 16.
    Luckie, M., Beverly, R., Brinkmeyer, W., et al.: Speedtrap: internet-scale IPv6 alias resolution. In: IMC (2013)Google Scholar
  17. 17.
    Luckie, M., Dhamdhere, A., Huffaker, B., Clark, D., Claffy, K.: bdrmap: inference of borders between IP networks. In: IMC (2016)Google Scholar
  18. 18.
    Luckie, M., Huffaker, B., et al.: Learning regexes to extract router names from hostnames. In: IMC (2019)Google Scholar
  19. 19.
    Marder, A., Luckie, M., Dhamdhere, A., Huffaker, B., Claffy, K., Smith, J.M.: Pushing the boundaries with bdrmapIT: mapping router ownership at internet scale. In: IMC (2018)Google Scholar
  20. 20.
    Marder, A., Luckie, M., Huffaker, B., Claffy, K.: vrfinder: finding forwarding addresses in traceroute. In: POMACS (2020)Google Scholar
  21. 21.
    Marder, A., Smith, J.M.: MAP-IT: multipass accurate passive inferences from traceroute. In: IMC (2016)Google Scholar
  22. 22.
    Padmanabhan, R., Li, Z., Levin, D., Spring, N.: UAv6: alias resolution in IPv6 using unused addresses. In: PAM (2015)Google Scholar
  23. 23.
    Sayrafiezadeh, M.: The birthday problem revisited. Math. Mag. 67(3), 220–223 (1994)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Spring, N., Dontcheva, M., Rodrig, M., Wetherall, D.: How to resolve IP aliases. Technical report, UW-CSE-TR 04–05-04, University of Washington (2004)Google Scholar
  25. 25.
    Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel. ACM SIGCOMM CCR 32, 133–145 (2002)CrossRefGoogle Scholar
  26. 26.
    Touch, J.: RFC 6864: updated specification of the ipv4 id field. Technical report, Internet Engineering Task Force, February 2013Google Scholar
  27. 27.
    Vanaubel, Y., Luttringer, J., Mérindol, P., Pansiot, J., Donnet, B.: TNT, watch me explode: a light in the dark for revealing MPLS tunnels. In: Network Traffic Measurement and Analysis Conference, June 2019Google Scholar
  28. 28.
    Vanaubel, Y., Mérindol, P., Pansiot, J.J., Donnet, B.: Through the wormhole: tracking invisible MPLS tunnels. In: IMC (2017)Google Scholar
  29. 29.
    Vanaubel, Y., Pansiot, J.J., Mérindol, P., Donnet, B.: Network fingerprinting: TTL-based router signatures. In: IMC (2013)Google Scholar
  30. 30.
    Viger, F., et al.: Detection, understanding, and prevention of traceroute measurement artifacts. Comput. Netw. 52(5), 998–1018 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.UC San Diego/CAIDASan DiegoUSA

Personalised recommendations