Advertisement

Discovering the IPv6 Network Periphery

  • Erik C. RyeEmail author
  • Robert Beverly
Conference paper
  • 32 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12048)

Abstract

We consider the problem of discovering the IPv6 network periphery, i.e., the last hop router connecting endhosts in the IPv6 Internet. Finding the IPv6  periphery using active probing is challenging due to the IPv6 address space size, wide variety of provider addressing and subnetting schemes, and incomplete topology traces. As such, existing topology mapping systems can miss the large footprint of the IPv6  periphery, disadvantaging applications ranging from IPv6 census studies to geolocation and network resilience. We introduce “edgy,” an approach to explicitly discover the IPv6 network periphery, and use it to find >64M IPv6  periphery router addresses and >87M links to these last hops – several orders of magnitude more than in currently available IPv6 topologies. Further, only 0.2% of edgy’s discovered addresses are known to existing IPv6 hitlists.

Keywords

IPv6 Topology Discovery Reconnaissance Security 

Notes

Acknowledgments

We thank Jeremy Martin, Thomas Krenc, and Ricky Mok for early feedback, John Heidemann for shepherding, Mike Monahan and Will van Gulik for measurement infrastructure, and the anonymous reviewers for insightful critique. This work supported in part by NSF grant CNS-1855614. Views and conclusions are those of the authors and should not be interpreted as representing the official policies or position of the U.S. government or the NSF.

References

  1. 1.
    Zwangstrennung (forced IP address change) (2018). https://de.wikipedia.org/wiki/Zwangstrennung
  2. 2.
    Huawei LTE CPE B315 (MTS 8212FT) - discussion (2019). http://4pda.ru/forum/index.php?showtopic=700481&st=3580
  3. 3.
    The CAIDA UCSD AS Classification Dataset (2019). http://www.caida.org/data/as-classification
  4. 4.
  5. 5.
    Berger, A., Weaver, N., Beverly, R., Campbell, L.: Internet nameserver IPv4 and IPv6 address relationships. In: Proceedings of ACM Internet Measurement Conference (IMC) (2013)Google Scholar
  6. 6.
    Beverly, R.: Yarrp’ing the Internet: randomized high-speed active topology discovery. In: Proceedings of ACM Internet Measurement Conference (IMC), November 2016Google Scholar
  7. 7.
    Beverly, R., Durairajan, R., Plonka, D., Rohrer, J.P.: In the IP of the beholder: strategies for active IPv6 topology discovery. In: Proceedings of ACM Internet Measurement Conference (IMC), November 2018Google Scholar
  8. 8.
    CAIDA: The CAIDA UCSD IPv6 Topology Dataset (2018). http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml
  9. 9.
    CAIDA: The CAIDA UCSD IPv6 Routed /48 Topology Dataset (2019). https://www.caida.org/data/active/ipv6_routed_48_topology_dataset.xml
  10. 10.
    Chittimaneni, K., Chown, T., Howard, L., Kuarsingh, V., Pouffary, Y., Vyncke, E.: Enterprise IPv6 Deployment Guidelines. RFC 7381 (Informational), October 2014. https://www.rfc-editor.org/rfc/rfc7381.txt
  11. 11.
    Czyz, J., Luckie, M., Allman, M., Bailey, M.: Don’t forget to lock the back door! A characterization of IPv6 network security policy. In: Network and Distributed Systems Security (NDSS) (2016)Google Scholar
  12. 12.
    Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Measuring IPv6 adoption. SIGCOMM Comput. Commun. Rev. 44(4), 1–32 (2014)CrossRefGoogle Scholar
  13. 13.
    Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., Elmokashfi, A., Aben, E.: Measuring the deployment of IPv6: topology, routing and performance. In: Proceedings of ACM Internet Measurement Conference (IMC) (2012)Google Scholar
  14. 14.
    Fan, X., Heidemann, J.: Selecting representative IP addresses for internet topology studies. In: Proceedings of ACM Internet Measurement Conference (IMC) (2010)Google Scholar
  15. 15.
    Foremski, P., Plonka, D., Berger, A.: Entropy/IP: uncovering structure in IPv6 addresses. In: Proceedings of ACM Internet Measurement Conference (IMC) (2016)Google Scholar
  16. 16.
    Gasser, O., et al.: Clusters in the expanse: understanding and unbiasing IPv6 hitlists. In: Proceedings of ACM Internet Measurement Conference (IMC) (2018)Google Scholar
  17. 17.
    Gont, F., Chown, T.: Network reconnaissance in IPv6 networks. RFC 7707 (Informational), March 2016. http://www.ietf.org/rfc/rfc7707.txt
  18. 18.
    Hyun, Y., Claffy, K.: Archipelago measurement infrastructure (2018). http://www.caida.org/projects/ark/
  19. 19.
    IAB, IESG: Recommendations on IPv6 Address Allocations to Sites. RFC 3177 (Informational), September 2001. http://www.ietf.org/rfc/rfc3177.txt
  20. 20.
    Livadariu, I., Ferlin, S., Alay, Ö., Dreibholz, T., Dhamdhere, A., Elmokashfi, A.: Leveraging the IPv4/IPv6 identity duality by using multi-path transport. In: 2015 IEEE Conference on Computer Communications Workshops (2015)Google Scholar
  21. 21.
    Luckie, M., Beverly, R.: The impact of router outages on the AS-level Internet. In: Proceedings of ACM SIGCOMM (2017)Google Scholar
  22. 22.
    Martin, J., Rye, E.C., Beverly, R.: Decomposition of MAC address structure for granular device inference. In: Proceedings of the Annual Computer Security Applications Conference (ACSAC), December 2016Google Scholar
  23. 23.
    Murdock, A., Li, F., Bramsen, P., Durumeric, Z., Paxson, V.: Target generation for Internet-wide IPv6 scanning. In: Proceedings of ACM Internet Measurement Conference (IMC) (2017)Google Scholar
  24. 24.
    Narten, T., Draves, R., Krishnan, S.: Privacy extensions for stateless address autoconfiguration in IPv6. RFC 4941, September 2007. http://www.ietf.org/rfc/rfc4941.txt
  25. 25.
    Narten, T., Huston, G., Roberts, L.: IPv6 address assignment to end sites. RFC 6177 (Best Current Practice), March 2011. http://www.ietf.org/rfc/rfc6177.txt
  26. 26.
    Plonka, D., Berger, A.: Temporal and spatial classification of active IPv6 addresses. In: Proceedings of ACM Internet Measurement Conference (IMC) (2015)Google Scholar
  27. 27.
    Pujol, E., Richter, P., Feldmann, A.: Understanding the share of IPv6 traffic in a dual-stack ISP. In: Passive and Active Measurement (PAM) (2017)Google Scholar
  28. 28.
    RIPE: Best current operational practice for operators: IPv6 prefix assignment for end-users - persistent vs non-persistent, and what size to choose (2017). https://www.ripe.net/publications/docs/ripe-690
  29. 29.
    Rohrer, J.P., LaFever, B., Beverly, R.: Empirical study of router IPv6 interface address distributions. IEEE Internet Comput. 20, 36–45 (2016)CrossRefGoogle Scholar
  30. 30.
    Rye, E.C., Beverly, R.: Discovering the IPv6 network periphery (2020). https://arxiv.org/abs/2001.08684
  31. 31.
    Rye, E.C., Martin, J., Beverly, R.: EUI-64 considered harmful (2019). https://arxiv.org/pdf/1902.08968.pdf
  32. 32.
    Srisuresh, P., Holdrege, M.: IP Network Address Translator (NAT) terminology and considerations. RFC 2663 (Informational), August 1999. http://www.ietf.org/rfc/rfc2663.txt
  33. 33.
    Team Cymru: IP to ASN mapping (2019). https://www.team-cymru.org/IP-ASN-mapping.html
  34. 34.
    Zander, S., Wang, X.: Are we there yet? IPv6 in Australia and China. ACM Trans. Internet Technol. 18(3), 1–20 (2018)CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.Naval Postgraduate SchoolMontereyUSA

Personalised recommendations