Advertisement

Hybrid Membrane and Porous-Plates Reactors for Gas Turbine Applications

  • Medhat A. NemitallahEmail author
  • Ahmed A. Abdelhafez
  • Mohamed A. Habib
Chapter
  • 18 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 122)

Abstract

Because of the high efficiency penalty associated with using cryogenic oxygen separation units in oxy-combustion systems, researchers were striving to find alternative solutions. One of these solutions is the use of ion transport membranes (ITMs) for oxygen production. These ITMs have the capability of extracting oxygen from air at elevated temperatures (above 650 °C). The permeation of oxygen through the ion transport membranes depends on the membrane type, thickness, operating temperature and the partial pressure of oxygen across the membrane. The integration of these membranes in oxy-combustion reactors led to the design of oxygen transport reactors (OTRs) where oxygen-air separation occurs at one side while the fuel burning occurs at the other side of the membrane. The idea is to replace the currently used conventional combustors by multi-membrane reactor system. However, such membrane reactors are suffering from low oxygen permeation and deterioration of membrane performance after a short period of time due to contamination caused by combustion products. Currently, research is focused on improving the membrane performance and chemical stability under more demanding operational conditions. In this regard, dense mixed-ionic-electronic conducting ceramic (MIEC) membrane has shown a good potential for use in oxy-fuel technology. One main challenge in designing an OTR to be used in power plants is the low oxygen flux that makes the required membrane surface area to be very large. Accordingly, improving oxygen permeation in ITMs is a necessary step towards the efficient design of OTRs. Another kind of membranes is the polymeric kind, which can separate gases under low temperatures. In polymeric membrane gas separation, there is no need for thermal heating of the membrane or the involvement of any sorbents to separate a gas mixture, as in the cases of cryogenic distillation and adsorption. The main driving force in polymeric membrane air separation is the partial pressure gradient across the membrane.

Notes

Acknowledgements

The authors wish to acknowledge the support received from King Fahd University of Petroleum & Minerals under Grant number BW191002 for the preparation of this book chapter.

References

  1. 1.
    Habib MA, Nemitallah MA, Ben-Mansour R (2013) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27:2–19CrossRefGoogle Scholar
  2. 2.
    Ben-Mansour R, Habib MA, Badr HM, Azharuddin IF, Nemitallah MA (2012) Characteristics of oxy-fuel combustion in an oxygen transport reactor. Energy Fuels 26:4599–4606CrossRefGoogle Scholar
  3. 3.
    Shah K, Moghtaderi B, Zanganeh J, Wall T (2013) Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants. Fuel 107:356–370CrossRefGoogle Scholar
  4. 4.
    Moghtaderi B, Zanganeh J, Shah K, Wu H (2012) Application of concrete and demolition waste as CO2 sorbent in chemical looping gasification of biomass. Energy Fuels 26:2046–2057CrossRefGoogle Scholar
  5. 5.
    Shah K, Moghtaderi B, Wall T (2013) Effect of flue gas impurities on the performance of a chemical looping based air separation process for oxy-fuel combustion. Fuel 103:932–942CrossRefGoogle Scholar
  6. 6.
    Buhre BJP, Elliott IK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Progress Energy Combust Sci 31:283–307CrossRefGoogle Scholar
  7. 7.
    Lin YS (2001) Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol 25:39–55CrossRefGoogle Scholar
  8. 8.
    Wang Z, Yang N, Meng B, Tan X, Li K (2009) Preparation and oxygen permeation properties in hollow fiber membranes. Ind Eng Chem Res 48:510–516CrossRefGoogle Scholar
  9. 9.
    Tan X, Wang Z, Liu H, Liu S (2009) Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fiber membranes by surface modifications. J Membr Sci 324:128CrossRefGoogle Scholar
  10. 10.
    Kim J, Lin YS (2000) Synthesis and oxygen permeation properties of thin YSZ/Pd composite membranes. Aiche 46:1521CrossRefGoogle Scholar
  11. 11.
    Chen CC, Prasad R, Gottzmann CF (1999) Solid electrolyte membrane with porous catalytically-enhancing constituents, assigned to praxair technology. US Patent 5:938822Google Scholar
  12. 12.
    Schwartz M, White JH, Sammels A (2000) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them, assigned to elytron research inc. US Patent 6:033632Google Scholar
  13. 13.
    Zebao R, Yongdan L, Lin YS (2009) Analysis of oxygen permeation through dense ceramic membranes with chemical reactions of finite rate. Chem Eng Sci 64:172–179CrossRefGoogle Scholar
  14. 14.
    Nemitallah MA, Habib MA, Ben-Mansour R (2012) Investigations of oxy-fuel combustion and oxygen permeation in an IM reactor using a two-step oxy-combustion reaction kinetics model. J Membr Sci 432:1–12CrossRefGoogle Scholar
  15. 15.
    Nemitallah MA, Habib MA, Ben-Mansour R, Ghoniem AF (2014) Design of an ion transport membrane reactor for gas turbine combustion application. J Membr Sci 450:60–71CrossRefGoogle Scholar
  16. 16.
    Tan X, Li K (2007) Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. Aiche 53:838CrossRefGoogle Scholar
  17. 17.
    Kaiser A, Foghmoes S, Chatzichristodoulou C, Sogaard M, Glasscock JA, Frandsen HL, Hendriksen PV (2011) Evaluation of thin film ceria membranes for syngas membrane reactors-preparation, characterization and testing. J Membr Sci 378:51–60CrossRefGoogle Scholar
  18. 18.
    Ben-Mansour R, Nemitallah MA, Habib MA (2013) Numerical investigations of oxygen permeation and methane-oxy-combustion in a stagnation flow ion transport membrane reactor. Energy 1:1–11CrossRefGoogle Scholar
  19. 19.
    Akin F, Lin YS (2004) Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions. J Membr Sci 231:133–146CrossRefGoogle Scholar
  20. 20.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion-part II: analysis and comparison of alternatives. Energy 36:4721–4739CrossRefGoogle Scholar
  21. 21.
    Ahmed P, Habib MA, Ben-Mansour R, Kirchen P, Ghoniem AF (2014) CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion. Energy 77:932–944CrossRefGoogle Scholar
  22. 22.
    Gunasekaran S, Mancini ND, Mitsos A (2014) Optimal design and operation of membrane-based oxy-combustion power plants. Energy 70:338–354CrossRefGoogle Scholar
  23. 23.
    Kotowicz J, Michalski S (2014) Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation. Energy 64:109–119CrossRefGoogle Scholar
  24. 24.
    Habib MA, Nemitallah MA (2015) Design of an ion transport membrane reactor for application in fire tube boilers. Energy.  https://doi.org/10.1016/j.energy.2015.01.029
  25. 25.
    Abdulhameed MA, Othman MHD, Ismail AF, Matsuura T, Harun Z, Rahman MA, Puteh MH, Jaafar J, Rezaei M, Hubadillah SK (2017) Carbon dioxide capture using a superhydrophobic ceramic hollow fiber membrane for gas-liquid contacting process. J Clean Prod 140:1731–1738CrossRefGoogle Scholar
  26. 26.
    Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES (2015) Membrane-based carbon capture from flue gas: a review. J Clean Prod 103:286–300CrossRefGoogle Scholar
  27. 27.
    Zhang Z (2016) Comparisons of various absorbent effects on carbon dioxide capture in membrane gas absorption (MGA) process. J Nat Gas Sci Eng 31:589–595CrossRefGoogle Scholar
  28. 28.
    Barba FC, Sánchez GM, Seguí BS, Darabkhani HG, Anthony EJ (2016) A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture. J Clean Prod 133:971–985CrossRefGoogle Scholar
  29. 29.
    Anheden M, Yan J, De Smedt G (2005) Denitrogenation or oxyfuel concepts. Oil Gas Sci Technol 60(3):485–495CrossRefGoogle Scholar
  30. 30.
    Smith AR, Klosek J (2011) A review of air separation technologies and their integration with energy conversion processes. Fuel Process Technol 70(2):115–134CrossRefGoogle Scholar
  31. 31.
    Augelletti R, Conti M, Annesini MC (2017) Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J Clean Prod 140:1390–1398CrossRefGoogle Scholar
  32. 32.
    Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers. In: Freeman B, Yampolskii Y, Pinnau I (eds) Materials science of membranes for gas and vapor separation, 1st edn. Wiley, pp 1–42Google Scholar
  33. 33.
    Park JY, Paul DR (1997) Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J Membr Sci 125:23–39CrossRefGoogle Scholar
  34. 34.
    Maeda Y, Paul DR (1987) Effect of antiplasticization on selectivity and productivity of gas separation membranes. J Membr Sci 30:1–9CrossRefGoogle Scholar
  35. 35.
    Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400CrossRefGoogle Scholar
  36. 36.
    Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions 318(5848):254–258Google Scholar
  37. 37.
    Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54(18):4729–4761Google Scholar
  38. 38.
    Woo KT, Dong G, Lee J, Kim JS, Do YS, Lee WH, Lee HS, Lee YM (2016) Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes. J Membr Sci 510:472–480CrossRefGoogle Scholar
  39. 39.
    Liu Q, Paul DR, Freeman BD (2016) Gas permeation and mechanical properties of thermally rearranged (TR) copolyimides. Polymer 82:378–391CrossRefGoogle Scholar
  40. 40.
    Jo HJ, Soo CY, Dong G, Do YS, Wang HH, Lee MJ, Quay JR, Murphy MK, Lee YM (2015) Thermally rearranged poly (benzoxazole-co-imide) membranes with superior mechanical strength for gas separation obtained by tuning chain rigidity. Macromolecules 48(7):2194–2202CrossRefGoogle Scholar
  41. 41.
    Calle M, Lozano AE, Lee YM (2012) Formation of thermally rearranged (TR) polybenzoxazoles: effect of synthesis routes and polymer form. Eur Polymer J 48(7):1313–1322CrossRefGoogle Scholar
  42. 42.
    Jiang X, Kumar A (2005) Performance of silicone-coated polymeric membrane in separation of hydrocarbons and nitrogen mixtures. J Membr Sci 254:179–188CrossRefGoogle Scholar
  43. 43.
    Coombe HS, Nieh S (2007) Polymer membrane air separation performance for portable oxygen enriched combustion applications. Energy Convers Manag 48(5):1499–1505CrossRefGoogle Scholar
  44. 44.
    Alsari A, Kruczek B, Matsuura T (2007) Effect of pressure and membrane thickness on the permeability of gases in dense polyphenylene oxide (PPO) membranes: thermodynamic interpretation. Sep Sci Technol 42(10):2143–2155CrossRefGoogle Scholar
  45. 45.
    Feng X, Ivory J, Rajan VS (1999) Air separation by integrally asymmetric hollow-fiber membrane. AIChE J 45(10):2142–2152CrossRefGoogle Scholar
  46. 46.
    Dixon-Garrett SV, Nagai K, Freeman BD (2000) Sorption, Diffusion, and Permeation of Ethylbenzene in Poly(1-trimethylsilyl-1-propyne). J Polym Sci 38(8):1078–1089CrossRefGoogle Scholar
  47. 47.
    Ahmad F, Lau KK, Shariff AM, Murshid G (2012) Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Comput Chem Eng 36:119–128CrossRefGoogle Scholar
  48. 48.
    Zhao L, Riensche E, Menzer R, Blum L, Stolten D (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Membr Sci 325:284–294CrossRefGoogle Scholar
  49. 49.
    Kawachale N, Kumar A, Kirpalani D (2008) Numerical investigation of hydrocarbon enrichment of process gas mixtures by permeation through polymeric membranes. Chem Eng Technol 31:58–65CrossRefGoogle Scholar
  50. 50.
    Binns M, Lee S, Yeo YK, Lee JH, Moon JH, Yeo JG, Kim JK (2016) Strategies for the simulation of multi-component hollow fiber multi-stage membrane gas separation systems. J Membr Sci 497:458–471CrossRefGoogle Scholar
  51. 51.
    Dong G, Woo KT, Kim J, Kim JS, Lee YM (2015) Simulation and feasibility study of using thermally rearranged polymeric hollow fiber membranes for various industrial gas separation applications. J Membr Sci 496:229–241CrossRefGoogle Scholar
  52. 52.
    Zhang Z, Yan Y, Wood DA, Zhang W, Li L, Zhang L, Van der Bruggen B (2015) Influence of the membrane module geometry on SO2 removal: a numerical study. Ind Eng Chem Res 54:11619–11627CrossRefGoogle Scholar
  53. 53.
    Choi W, Ingole PG, Li H, Kim J-H, Lee H-K, Baek I-H (2016) Preparation of facilitated transport hollow fiber membrane for gas separation using cobalt tetraphenylporphyrin complex as a coating material. J Clean Prod 133:1008–1016CrossRefGoogle Scholar
  54. 54.
    ANSYS® Academic Research, Release 12.1Google Scholar
  55. 55.
    Nemitallah MA, Habib MA, Ben-Mansour R (2013) Investigations of oxy-fuel combustion and oxygen permeation in an ITM reactor using a two-step oxy-combustion reaction kinetics model. J Membr Sci 432:1–12CrossRefGoogle Scholar
  56. 56.
    Habib MA, Nemitallah MA (2015) Design of an ion transport membrane reactor for application in fire tube boilers. Energy 81:787–801CrossRefGoogle Scholar
  57. 57.
    Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington D.CzbMATHGoogle Scholar
  58. 58.
    Li W, Liu JJ, Chen CS (2009) Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation. J Membr Sci 340:266–271CrossRefGoogle Scholar
  59. 59.
    Choi JI, Jung CH, Han SH, Park HB, Lee YM (2010) Thermally rearranged (TR) poly (benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. J Membr Sci 349:358–368CrossRefGoogle Scholar
  60. 60.
    Xiao Y, Chung TS (2011) Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture. Energy Environ Sci 4:201–208CrossRefGoogle Scholar
  61. 61.
    Katoh T, Tokumura M, Yoshikawa H, Kawase Y (2011) Simulation of multicomponent gas separation by hollow-fiber membrane module: nonideal mixing flows in permeate and residue sides using the tanks-in-series model. Sep Purif Technol 76(3):362–372CrossRefGoogle Scholar
  62. 62.
    Wall TF (2007) Combustion processes carbon capture. Proc Combust Inst 31:31–47CrossRefGoogle Scholar
  63. 63.
    Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31:283–307CrossRefGoogle Scholar
  64. 64.
    Haslbeck J, Capicotto P, Juehn N, Lewis E, Rutkowski M, Woods M et al (2007) In: bituminous coal to electricity. Washington D.C., 1:DOE/NETL-1291Google Scholar
  65. 65.
    Balachandran U, Kleefisch MS, Kobylinski TP, Morissette SL, Pei S (1997) Oxygen ion-conducting dense ceramic membranes. US Patent, 5, 639-437Google Scholar
  66. 66.
    Schwartz M, White JH, Sammels AF (2000) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them. US Patent, 6, 033-632Google Scholar
  67. 67.
    Chen CC, Prasad R, Gottzmann CF (1999) Solid electrolyte membrane with porous catalytically-enhancing constituents (assigned to praxair technology). US Patent, 5, 938-822Google Scholar
  68. 68.
    Kim J, Lin YS (2000) Synthesis and oxygen permeation properties of thin YSZ/Pd composite membranes. AIChE J 46:1521CrossRefGoogle Scholar
  69. 69.
    Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite Membranes. Chem Eng Sci 54:3839–3850CrossRefGoogle Scholar
  70. 70.
    Habib MA, Ben-Mansour R, Nemitallah MA (2013) Modeling of oxygen permeation through a LSCF ion transport membrane. Comput Fluids 76:1–10CrossRefGoogle Scholar
  71. 71.
    Hong J, Kirchen P, Ghoniem AF (2012) Numerical simulation of ion transport membrane reactors: oxygen permeation and transport and fuel conversion. J Membr Sci 71–85Google Scholar
  72. 72.
    Ben-Mansour R, Nemitallah MA, Habib MA (2013) Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor. Energy 54:322–332CrossRefGoogle Scholar
  73. 73.
    Hong J, Kirchen P, Ghoniem AF (2013) Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J Membr Sci 428:309–322CrossRefGoogle Scholar
  74. 74.
    Hunt A, Dimitrakopoulos G, Kirchen P, Ghoniem AF (2014) Measuring the oxygen profile and permeation flux across an ion transport (La0.9Ca0.1FeO3−δ) membrane and the development and validation of a multi-step surface exchange model. J Membr Sci 468:62–72CrossRefGoogle Scholar
  75. 75.
    Kirchen P, Apo DJ, Hunt A, Ghoniem AF (2013) A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc Combust Inst 34:3463–3470CrossRefGoogle Scholar
  76. 76.
    Park HB, Han SH, Jung CH, Lee YM, Hill AJ (2010) Thermally rearranged (TR) polymer membranes for CO2 separation. J Membr Sci 359:11–24CrossRefGoogle Scholar
  77. 77.
    Calle M, Lozano AE, Lee YM (2012) Formation of thermally rearranged (TR) polybenzoxazoles: effect of synthesis routes and polymer form. Eur Polym J 48(7):1313–1322CrossRefGoogle Scholar
  78. 78.
    Gambini M, Vellini M (2012) Oxygen transport membranes for ultra-supercritical (USC) power plants with very low CO2 emissions. J Eng Gas Turbines Power 134(8):081801CrossRefGoogle Scholar
  79. 79.
    Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54(17):3839–3850CrossRefGoogle Scholar
  80. 80.
    Habib MA, Ahmed P, Ben-Mansour R, Badr HM, Kirchen P, Ghoniem AF (2013) Modeling of a combined ion transport and porous membrane reactor for oxy-combustion. J Membr Sci 446:230–243CrossRefGoogle Scholar
  81. 81.
    Ghoniem AF, Mitsos A, Shao-Horn Y, Habib MA, Mezghani K, Ben-Mansour R (2015) Integrated polymeric-ceramic membrane based oxy-fuel combustor. U.S. Patent 9,004,909Google Scholar
  82. 82.
    Yantovski E, Gorski J, Smyth B, Ten Elshof J (2004) Zero-emission fuel-fired power plants with ion transport membrane. Energy 29(12):2077–2088CrossRefGoogle Scholar
  83. 83.
    Hong J, Kirchen P, Ghoniem AF (2013) Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane. Combust Flame 160(3):704–717CrossRefGoogle Scholar
  84. 84.
    Simpson AP, Simon AJ (2007) Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation. Energy Convers Manag 48(11):3034–3045CrossRefGoogle Scholar
  85. 85.
    Burdyny T, Struchtrup H (2010) Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy 35(5):1884–1897CrossRefGoogle Scholar
  86. 86.
    Habib MA, Nemitallah MA, Afaneh D, Mezghani K (2017) Characteristic of air separation in hollow-fiber polymeric membrane for oxygen-enriched air clean combustion applications. J Clean Prod 143:960–972CrossRefGoogle Scholar
  87. 87.
    Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers. Materials science of membranes for gas and vapor separation, John Wiley and Sons Ltd, the Atrium, Southern gate, Chichester, West Sussex PO19 8SQ, EnglandGoogle Scholar
  88. 88.
    Tan X, Li K (2002) Modeling of air separation in a LSCF hollow-fiber membrane module. AIChE J 48(7):1469–1477CrossRefGoogle Scholar
  89. 89.
    ANSYS Academic Research, Release 16.1. ANSYS Inc. April 2015. Southpointe. 2600 ANSYS Drive, Canonsburg, PA 15317Google Scholar
  90. 90.
    Xiao Y, Chung TS (2011) Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture. Energy Environ Sci 201–208Google Scholar
  91. 91.
    Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology—the US Department of Energy’s Carbon Sequestration Program. Int J Greenhouse Gas Control 2(1):9–20CrossRefGoogle Scholar
  92. 92.
    Marland G, Boden TA, Andres RJ, Brenkert AL, Johnston CA (2007) Global, regional, and national fossil fuel CO2 emissions. Trends Compendium Data Glob Change 37831–6335Google Scholar
  93. 93.
    Agency IE (2016) World energy statistics. IEA/OECDGoogle Scholar
  94. 94.
    Agency IE (2016) World energy outlook. IEA/OECDGoogle Scholar
  95. 95.
    Cebrucean D, Cebrucean V, Ionel I (2014) CO2 capture and storage from fossil fuel power plants. Energy Procedia 63:18–26CrossRefGoogle Scholar
  96. 96.
    Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilization technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Utilization 9:82–102CrossRefGoogle Scholar
  97. 97.
    Sreenivasulu B, Gayatri DV, Sreedhar I, Raghavan KV (2015) A journey into the process and engineering aspects of carbon capture technologies. Renew Sustain Energy Rev 41:1324–1350CrossRefGoogle Scholar
  98. 98.
    Habib MA, Badr HM, Ahmed SF, Ben-Mansour R, Mezghani K, Imashuku S, la O’ GJ, Shao‐Horn Y, Mancini ND, Mitsos A, Kirchen P (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35(9):741–764CrossRefGoogle Scholar
  99. 99.
    Kutne P, Kapadia BK, Meier W, Aigner M (2011) Experimental analysis of the combustion behavior of oxyfuel flames in a gas turbine model combustor. Proc Combust Inst 33(2):3383–3390CrossRefGoogle Scholar
  100. 100.
    Runyon J, Marsh R, Valera-Medina A, Giles A, Morris S, Pugh D, Sevcenco Y, Bowen P (2015) Methane-oxygen flame stability in a generic premixed gas turbine swirl combustor at varying thermal power and pressure. In: ASME Turbo Expo 2015: turbine technical conference and exposition 2015 June 15. American Society of Mechanical Engineers, pp V04BT04A043–V04BT04A043Google Scholar
  101. 101.
    Xie Y, Wang J, Zhang M, Gong J, Jin W, Huang Z (2013) Experimental and numerical study on laminar flame characteristics of methane oxy-fuel mixtures highly diluted with CO2. Energy Fuels 27(10):6231–6237CrossRefGoogle Scholar
  102. 102.
    Andersson K, Johnsson F (2006) Process evaluation of an 865 MWe lignite fired O2/CO2 power plant. Energy Convers Manag 47:3487–3498CrossRefGoogle Scholar
  103. 103.
    Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EMA (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 2016(96):654–665CrossRefGoogle Scholar
  104. 104.
    Meng X, Bi X, Meng B, Yang N, Tan X, Liu L, Liu S (2016) H2/CH4/CO2-tolerant properties of SrCo0.8Fe0.1Ga0.1O3-δ hollow fiber membrane reactors for methane partial oxidation to syngas. Fuel Process Technol 161:265–272CrossRefGoogle Scholar
  105. 105.
    Kirchen P, Apo DJ, Hunt A, Ghoniem AF (2013) A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc Combust Inst 34(2):3463–3470CrossRefGoogle Scholar
  106. 106.
    Habib MA, Tahir F, Nemitallah MA, Ahmed WH, Badr HM (2015) Experimental and numerical analysis of oxy-fuel combustion in a porous plate reactor. Int J Energy Res 39(9):1229–1240CrossRefGoogle Scholar
  107. 107.
    Ko GH, Hamins A, Bundy M, Johnsson EL, Kim SC, Lenhert DB (2009) Mixture fraction analysis of combustion products in the upper layer of reduced-scale compartment fires. Combust Flame 156(2):467–476CrossRefGoogle Scholar
  108. 108.
    McDermott R, McGrattan K, Hostikka S (2008) Fire dynamics simulator (version 5) technical reference guide. NIST Spec Publ 1018:5Google Scholar
  109. 109.
    Dharavath M, Manna P, Chakraborty D (2015) Numerical exploration of mixing and combustion in ethylene fueled scramjet combustor. Acta Astronaut 117:305–318CrossRefGoogle Scholar
  110. 110.
    Han S, Kim J, Bae C (2014) Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion. Appl Energy 119:454–466CrossRefGoogle Scholar
  111. 111.
    Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018, April 3) Particle image velocimetry: a practical guide. SpringerGoogle Scholar
  112. 112.
    Research V. Phantom (PCC) Camera control help—AMETEK material analysis division. Software Revision: 2.14.727.0 2012Google Scholar
  113. 113.
    Dynamics D (2012) Dynamic studio manual—user’s guide. Dantec Dynamics A/S, 121, Tonsbakken 18, DK–2740Google Scholar
  114. 114.
    Lu L, Sick V (2013) High-speed particle image velocimetry near surfaces. J Visualized Exp JoVE 76Google Scholar
  115. 115.
    Sick V (2013) High speed imaging in fundamental and applied combustion research. Proc Combust Inst 34(2):3509–3530CrossRefGoogle Scholar
  116. 116.
    Fluent (2013) ANSYS 15.0 fluent theory guideGoogle Scholar
  117. 117.
    Pitsch H (2015) Combustion theory and applications in CFD. Lecture note, Tsinghua-Princeton Summer School on Combustion.Tsinghua University, Beijing, ChinaGoogle Scholar
  118. 118.
    Peters N (2010) Combustion theory. CEFRC Summer School, Lecture note, Princeton University, USAGoogle Scholar
  119. 119.
    Sivathanu Y, Faeth G (1990) Generalized state relationships for scalar properties in nonpremixed hydrocarbon/air flames. Combust Flame 82(2):211–230CrossRefGoogle Scholar
  120. 120.
    Ghenai C (2010) Combustion of syngas fuel in gas turbine can combustor. Adv Mech Eng 2:342–357CrossRefGoogle Scholar
  121. 121.
    Andersen J, Rasmussen CL, Giselsson T, Glarborg P (2009) Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions. Energy Fuels 23:1379–1389CrossRefGoogle Scholar
  122. 122.
    Nemitallah MA, Habib MA (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl Energy 111:401–415CrossRefGoogle Scholar
  123. 123.
    Chui E, Raithby G (1993) Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numer Heat Transf 23(3):269–288CrossRefGoogle Scholar
  124. 124.
    Habib MA, Ben-Mansour R, Badr HM, Ahmed SF, Ghoniem AF (2012) Computational fluid dynamic simulation of oxyfuel combustion in gas-fired water tube boilers. Comput Fluids 56:152–165CrossRefGoogle Scholar
  125. 125.
    Farooqui AE, Habib MA, Badr HM, Ben-Mansour R (2013) Modeling of ion transport reactor for oxy-fuel combustion. Int J Energy Res 37(11):1265–1279CrossRefGoogle Scholar
  126. 126.
    Chen WY (2012) Handbook of climate change mitigation. SpringerGoogle Scholar
  127. 127.
    Burdyny T, Struchtrup H (2010) Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy 35:1884–1897CrossRefGoogle Scholar
  128. 128.
    Banaszkiewicz T, Chorowski M, Gizicki W (2014) Comparative analysis of oxygen production for oxy-combustion application. Energy Procedia 51:127–134CrossRefGoogle Scholar
  129. 129.
    Simpson AP, Simon A (2007) Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation. Energy Convers Manag 48:3034–3045CrossRefGoogle Scholar
  130. 130.
    Kakaras E, Koumanakos A, Doukelis A, Giannakopoulos D, Vorrias I (2007) Oxyfuel boiler design in a lignite-fired power plant. Fuel 86:2144–2150CrossRefGoogle Scholar
  131. 131.
    Athayde DD, Souza DF, Silva AM, Vasconcelos D, Nunes EH, da Costa JCD, Vasconcelos WL (2016) Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 42:6555–6571CrossRefGoogle Scholar
  132. 132.
    Murali RS, Sankarshana T, Sridhar S (2013) Air separation by polymer-based membrane technology. Sep Purif Rev 42:130–186CrossRefGoogle Scholar
  133. 133.
    Habib MA, Tahir F, Nemitallah MA, Ahmed WH, Badr HM (2015) Experimental and numerical analysis of oxy-fuel combustion in a porous plate reactor. Int J Energy Res 39:1229–1240CrossRefGoogle Scholar
  134. 134.
    Moore NJ, Kribs J, Lyons KM (2011) Investigation of Jet-Flame Blowout with Lean-Limit Considerations. Flow, Turbulence and Combustion 87:525–536Google Scholar
  135. 135.
    Moore N, McCraw J, Lyons K (2008) Observations on jet-flame blow-out. J Combust 2008Google Scholar
  136. 136.
    Karbasi M, Wierzba I (1998) Prediction and validation of blowout limits of co-flowing jet diffusion flames—effect of dilution. Trans Am Soc Mech Eng J Energy Resour Technol 120:167–171CrossRefGoogle Scholar
  137. 137.
    Broadwell JE, Dahm WJ, Mungal MG (1985) Blowout of turbulent diffusion flames. In Symposium (international) on combustion, pp 303–310Google Scholar
  138. 138.
    Dahm W, Mayman A (1990) Blowout limits of turbulent jet diffusion flames for arbitrary source conditions. AIAA J 28:1157–1162CrossRefGoogle Scholar
  139. 139.
    Dowling DR, Dimotakis PE (1990) Similarity of the concentration field of gas-phase turbulent jets. J Fluid Mech 218:109–141CrossRefGoogle Scholar
  140. 140.
    Kondo S, Takizawa K, Takahashi A, Tokuhashi K (2006) Extended Le Chatelier’s formula and nitrogen dilution effect on the flammability limits. Fire Saf J 41:406–417CrossRefGoogle Scholar
  141. 141.
    Noble DR, Zhang Q, Shareef A, Tootle J, Meyers A, Lieuwen T (2006) ASME Paper No. GT2006-90470Google Scholar
  142. 142.
    Habib MA, Rashwan SS, Nemitallah MA, Abdelhafez A (2017) Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor. Appl Energy 189:177–186CrossRefGoogle Scholar
  143. 143.
    Aliyu M, Nemitallah MA, Said SA, Habib MA (2016) Characteristics of H2-enriched CH4O2 diffusion flames in a swirl-stabilized gas turbine combustor: Experimental and numerical study. Int J Hydrogen Energy 41(44):20418–20432CrossRefGoogle Scholar
  144. 144.
    Sanusi YS, Mokheimer EM, Shakeel MR, Abubakar Z, Habib MA (2017) Oxy-combustion of hydrogen-enriched methane: experimental measurements and analysis. Energy Fuels 31:2007–2016CrossRefGoogle Scholar
  145. 145.
    Oh J, Noh D (2013) Lifted flame behavior of a non-premixed oxy-methane jet in a lab-scale slot burner. Fuel 103:862–868CrossRefGoogle Scholar
  146. 146.
    Sayad P, Schönborn A, Clerini D, Klingmann J (2012) ASME 2012 gas turbine India conference, pp 815–826Google Scholar
  147. 147.
    Chan Y, Zhu M, Zhang Z, Liu P, Zhang D (2015) The effect of CO2 dilution on the laminar burning velocity of premixed methane/air flames. Energy Procedia 75:3048–3053CrossRefGoogle Scholar
  148. 148.
    Dirrenberger P, Le Gall H, Bounaceur R, Herbinet O, Glaude P-A, Konnov A, Battin-Leclerc F (2011) Measurements of laminar flame velocity for components of natural gas. Energy Fuels 25:3875–3884CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Ahmed A. Abdelhafez
    • 1
  • Mohamed A. Habib
    • 1
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations