Advertisement

Burner Designs for Clean Power Generation in Gas Turbines

  • Medhat A. NemitallahEmail author
  • Ahmed A. Abdelhafez
  • Mohamed A. Habib
Chapter
  • 10 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 122)

Abstract

The increasingly stricter environmental regulations encouraged researchers to develop combustion systems that can meet such restrictions. Older gas turbine engines for power generation used non-premixed flame combustors thanks to their superior stability characteristics.

Notes

Acknowledgements

The authors wish to acknowledge the support received from King Fahd University of Petroleum & Minerals under Grant number BW191002 for the preparation of this book chapter.

References

  1. 1.
    Pilavachi PA (2000) Power generation with gas turbine systems and combined heat and power. Appl Therm Eng 20(15):1421–1429CrossRefGoogle Scholar
  2. 2.
    Tsoutsanis E, Meskin N, Benammar M, Khorasani K (2016) A dynamic prognosis scheme for flexible operation of gas turbines. Appl Energy 164:686–701CrossRefGoogle Scholar
  3. 3.
    Tahan M, Tsoutsanis E, Muhammad M, Abdul Karim ZA (2017) Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review. Appl Energy 198:122–144Google Scholar
  4. 4.
    Akhtar S, Pi S, Shamim T (2018) Numerical investigation of flame structure and blowout limit for lean premixed turbulent methane-air flames under high pressure conditions. Appl Energy 228:21–32Google Scholar
  5. 5.
    Baltasar J, Carvalho MG, Coelho P, Costa M (1997) Flue gas recirculation in a gas-fired laboratory furnace: measurements and modelling. Fuel 76:919–929CrossRefGoogle Scholar
  6. 6.
    Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35:293–364CrossRefGoogle Scholar
  7. 7.
    Trimm DL (1983) Catalytic combustion (review). Appl Catal 7:249–282CrossRefGoogle Scholar
  8. 8.
    Franzelli B, Riber E, Gicquel LYM, Poinsot T (2012) Large Eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust Flame 159:621–637Google Scholar
  9. 9.
    Bobba MK, Gopalakrishnan P, Seitzman JM, Zinn BT (2006) Characteristics of combustion processes in a stagnation point reverse flow combustor. In: ASME Turbo Expo 2006: power for land, sea, and air, vol 1, GT2006-91217, pp 867–875Google Scholar
  10. 10.
    Evulet AT, ELKady AM, Branda AR, Chinn D (2009) On the performance and operability of GE’s dry low NOx combustors utilizing exhaust gas recirculation for postcombustion carbon capture. Energy Proc 1:3809–3816Google Scholar
  11. 11.
    Aigner M, Müller G (1993) Second-generation low-emission combustors for ABB gas turbines: field measurements with GT11N-EV. J Eng Gas Turbines Power 115(3):533–536CrossRefGoogle Scholar
  12. 12.
    Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443Google Scholar
  13. 13.
    Nemitallah MA, Abdelhafez A, Habib MA (2019) Experimental and numerical investigations of structure and stability of premixed swirl-stabilized CH4/O2/CO2 flames in a model gas turbine combustor. Energy Fuels 33:2526–2537CrossRefGoogle Scholar
  14. 14.
    Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J-M, Bouallou C (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62CrossRefGoogle Scholar
  15. 15.
    Bender WR (2006) Lean pre-mixed combustion. In the gas turbine handbook. U.S. Department of Energy, Morgantown, WV 26505, pp 218–224Google Scholar
  16. 16.
    Ohkubo Y (2005) Low-NOx combustion technology, vol 41, Tech. No. 1Google Scholar
  17. 17.
    Mongia HC (1998) Aero-thermal design and analysis of gas turbine combustion systems: current status and future direction. In: 34th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, 13–15 July 1998/Cleveland, OHGoogle Scholar
  18. 18.
    Hill SC, Smoot LD (2000) Modeling of nitrogen oxides formation and destruction in combustion systems. Prog Energy Combust Sci 26:417–458CrossRefGoogle Scholar
  19. 19.
    Soo M, Jae H, Massoudi M, Hwang J (2017) Effect of staged combustion on low NOx emission from an industrial-scale fuel oil combustor in South Korea. Fuel 210:282–289.  https://doi.org/10.1016/j.fuel.2017.08.065CrossRefGoogle Scholar
  20. 20.
    Hayashi S, Yamada H (2000) NOx emissions in combustion of lean premixed mixtures injected into hot burned gas. Proc Combust Inst 28(2):2443–2449CrossRefGoogle Scholar
  21. 21.
    Zhou H, Ren T, Yang Y (2015) Impact of OFA on combustion and NO x emissions of a large-scale laboratory furnace fired by a heavy-oil swirl burner. Appl Therm Eng 90:994–1006.  https://doi.org/10.1016/j.applthermaleng.2015.07.076CrossRefGoogle Scholar
  22. 22.
    Liu H, Liu Y, Yi G, Nie L, Che D (2013) Effects of air staging conditions on the combustion and NOx emission characteristics in a 600 MW wall fired utility boiler using lean coal.  https://doi.org/10.1021/ef401354g
  23. 23.
    Hodzic N, Kazagic A, Smajevic I (2016) Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas. Appl Energy 168:38–47.  https://doi.org/10.1016/j.apenergy.2016.01.081CrossRefGoogle Scholar
  24. 24.
    Yang J, Sun R, Sun S, Zhao N, Hao N, Chen H et al (2014) Experimental study on NOx reduction from staging combustion of high volatile pulverized coals. Part 1. Air staging. Fuel Process Technol 126:266–75.  https://doi.org/10.1016/j.fuproc.2014.04.034
  25. 25.
    Sreenivasan KR, Raghu S (2000) The control of combustion instability: a perspective. Curr Sci 79:867–883Google Scholar
  26. 26.
    Yamamoto T, Shimodaira K, Kurosawa Y, Yoshida S, Matsuura K (2017) Investigations of a staged fuel nozzle for aeroengines by multi-sector combustor test. In: Proceedings ASME Turbo Expo 2010 power land, sea air, pp 1–13Google Scholar
  27. 27.
    Yang J, Sun R, Sun S, Zhao N, Hao N, Chen H et al (2015) Experimental study on NOx reduction from staging combustion of high volatile pulverized coals. Part 2. Fuel staging. Fuel Process Technol 138:445–454.  https://doi.org/10.1016/j.fuproc.2015.06.019
  28. 28.
    Zhao Y, Sun S, Zhang T, Zhou H (2013) Experimental research on fuel staging cyclone gasification of wood powder. Fuel 103:53–57.  https://doi.org/10.1016/j.fuel.2011.08.020CrossRefGoogle Scholar
  29. 29.
    Samarasinghe J, Culler W, Quay BD, Santavicca DA, Connor JO (2017) The Effect of fuel staging on the structure and instability characteristics of swirl-stabilized flames in a lean premixed multinozzle can combustor. J Eng Gas Turbines Power 139:1–10.  https://doi.org/10.1115/1.4037461CrossRefGoogle Scholar
  30. 30.
    Lin Y, Peng Y, Liu G (2017) Investigation on NOx of a low emission combustor design with multihole premixer-prevaporizer, pp 1–8Google Scholar
  31. 31.
    Office of Federal Register (2011) 60.2 Definitions, U.S. Code of Federal Regulations Title 40 Part 60, vol 6, pp 1–1106Google Scholar
  32. 32.
    Environmental Protection Agency (EPA) (1999) Nitrogen oxides (NOx), why and how they are controlled. Epa-456/F-99-006R, November, p 48Google Scholar
  33. 33.
    Öztürk S, Eyriboyun M (2010) NOx formation in combustion of natural gases used in Turkey under different conditions. J Therm Sci Technol 30(2):95–102Google Scholar
  34. 34.
    Malte PC, Pratt DT (1974) The role of energy-releasing kinetics in NOx formation: fuel-lean, jet-stirred CO-air combustion. Combust Sci Technol 9(5–6):221–231CrossRefGoogle Scholar
  35. 35.
    Bozzelli JW, Dean AM (1995) O + NNH: a possible new route for NOx formation in flames. Int J Chem Kinet 27(11):1097–1109CrossRefGoogle Scholar
  36. 36.
    Carter CD, Barlow RS (1994) Simultaneous measurements of NO, OH, and the major species in turbulent flames. Opt Lett 19(4):299CrossRefGoogle Scholar
  37. 37.
    Kumar P (2012) An experimental and numerical study of NOx formation mechanisms in NH3-H2-Air flames. Iowa State UniversityGoogle Scholar
  38. 38.
    Zeldovich YB (1947) Oxidation of Nitrogen in combustion (transl by M. Shelef). Academy of Sciences of USSR, Institute of Chemical Physics, Moscow-LeningradGoogle Scholar
  39. 39.
    Baukal C (2005) Everything you need to know about NOx: controlling and minimizing pollutant emissions is critical for meeting air quality regulations. Met Finish 103(11):18–24CrossRefGoogle Scholar
  40. 40.
    Zeini E, Hesham Y (2010) Q-Chem steam boilers NOx emissions reduction. In: Proceedings of the 2nd annual gas processing symposium, pp 41–49Google Scholar
  41. 41.
    Normann F (2010) Oxy-fuel combustion—the control of Nitrogen Oxides. Chalmers University of Technology, Göteborg, SwedenGoogle Scholar
  42. 42.
    Liss B, Wilson BR, Wilson BW (2017) System and method for producing low NOx air emissions from gasification power plants. US 20170218284A1Google Scholar
  43. 43.
    Liss B, Wilson BR, Wilson BW (2019) System and method for producing low NOx air emissions from gasification power plants. US010329500 B2Google Scholar
  44. 44.
    Fenimore CP (1971) Formation of nitric oxide in premixed hydrocarbon flames. Symp Combust 13(1):373–380CrossRefGoogle Scholar
  45. 45.
    Barnes FJ, Bromly JH, Edwards TJ, Mandyczewsky R (1988) NOx emissions from radiant gas burners. J Inst Energy 155:184–188Google Scholar
  46. 46.
    Zhong BJ, Roslyakov PV (1996) Study on prompt NOx emission in boilers. J Therm Sci 5(2)Google Scholar
  47. 47.
    Lieuwen TC, Yang V (2013) Gas turbine emissions. Cambridge aerospace series. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. 48.
    Schefer RW, Namazian M, Kelly J (1991) Simultaneous Raman scattering and laser-induced fluorescence for multispecies imaging in turbulent flames. Opt Lett 16(11):858CrossRefGoogle Scholar
  49. 49.
    Schefer RW, Namazian M, Kelly J (1991) CH, OH and CH4 concentration measurements in a lifted turbulent-jet flame. Symp Combust 23(1):669–676CrossRefGoogle Scholar
  50. 50.
    Mcdonell V et al (2014) Development and evaluation of gas fuel interchangeability criteria and methodologies, CaliforniaGoogle Scholar
  51. 51.
    Fackler KB, Karalus MF, Novosselov IV, Kramlich JC, Malte PC (2011) Experimental and numerical study of NOx formation from the lean premixed combustion of CH4 mixed with CO2 and N2. In: Proceedings ASME Turbo Expo, vol 2, Parts A and B, pp 55–63Google Scholar
  52. 52.
    Cho ES, Chung SH (2009) Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion. J Mech Sci Technol 23(3):650–658CrossRefGoogle Scholar
  53. 53.
    Pavri R, Moore GD (2003) Gas turbines emissions and control. GE Power Syst 17:29–43, no. GER-4211Google Scholar
  54. 54.
    Bender WR. Lean pre-mixed combustion. In: Gas turbine handbook, pp 217–227Google Scholar
  55. 55.
    Richards G, Weiland N, Strakey P (2006) Combustion strategies for syngas and high-hydrogen fuel. In: Gas turbine handbook, pp 203–211Google Scholar
  56. 56.
    Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Prog Energy Combust Sci 29(2):89–113CrossRefGoogle Scholar
  57. 57.
    Schnelle KB, Dunn RF, Ternes ME (2016) Air pollution control technology handbook, 2nd edn. CRC PressGoogle Scholar
  58. 58.
    Zhang L, Su D, Zhong M (2015) The effect of functional forms of nitrogen on fuel-NOx emissions. Environ Monit Assess 187(1):1–8CrossRefGoogle Scholar
  59. 59.
    Nakata T, Sato M, Hasegawa T (1998) Reaction of fuel NOx formation for gas turbine conditions. J Eng Gas Turbines Power 120(3):474–480CrossRefGoogle Scholar
  60. 60.
    Aliyu M, Nemitallah MA, Said SA, Habib MA (2016) Characteristics of H2-enriched CH4-O2 diffusion flames in a swirl-stabilized gas turbine combustor: experimental and numerical study. Int J Hydrogen Energy 41:20418–20432.  https://doi.org/10.1016/j.ijhydene.2016.08.144CrossRefGoogle Scholar
  61. 61.
    Lacarelle A, Moeck J, Konle H, Vey S (2007) Effect of fuel/air mixing on NOx emissions and stability in a gas premixed combustion system. In: AIAA Aerospace Sciences Meeting and Exhibit 2007, pp 1–14.  https://doi.org/10.2514/6.2007-1417
  62. 62.
    Bunce NA, Quay BD, Santavicca DA (2013) Interaction between swirl number fluctuations and vortex shedding in a single-nozzle turbulent swirling fully-premixed combustor. J Eng Gas Turbines Power 136:021503.  https://doi.org/10.1115/1.4025361CrossRefGoogle Scholar
  63. 63.
    Lieuwen T, Cho JH (2005) Coherent acoustic wave amplification/damping by wrinkled flames. J Sound Vib 279:669–686.  https://doi.org/10.1016/j.jsv.2003.11.050CrossRefGoogle Scholar
  64. 64.
    Huang Y, Ratner A (2009) Experimental investigation of thermoacoustic coupling for low-swirl lean premixed flames. J Propuls Power 25:365–373.  https://doi.org/10.2514/1.36310CrossRefGoogle Scholar
  65. 65.
    Emadi M, Kaufman K, Burkhalter MW, Salameh T, Gentry T, Ratner A (2015) Examination of thermo-acoustic instability in a low swirl burner. Int J Hydrogen Energy 40:13594–13603.  https://doi.org/10.1016/j.ijhydene.2015.08.016CrossRefGoogle Scholar
  66. 66.
    Hart RW, McClure FT (1965) Theory of acoustic instability in solid-propellant rocket combustion. Symp Combust 10:1047–1065.  https://doi.org/10.1016/S0082-0784(65)80246-6CrossRefGoogle Scholar
  67. 67.
    Crocco L (1969) Research on combustion instability in liquid propellant rockets. Symp Combust 12:85–99.  https://doi.org/10.1016/S0082-0784(69)80394-2CrossRefGoogle Scholar
  68. 68.
    Marshall WM, Pal S, Woodward RD, Santoro RJ (2006) Combustion instability studies using gaseous methane and liquid oxygen. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 2006Google Scholar
  69. 69.
    Sutton G, Biblarz O (2001) Rocket propulsion elements.  https://doi.org/10.1017/cbo9781107415324.004
  70. 70.
    Candel S (2002) Combustion dynamics and control: progress and challenges. Proc Combust Inst 29:1–28.  https://doi.org/10.1016/S1540-7489(02)80007-4CrossRefGoogle Scholar
  71. 71.
    Wicker JM, Greene WD, Kim SI, Yang V (1996) Triggering of longitudinal combustion instabilities in solid rocket motors: nonlinear combustion response. J Propuls Power 12:1148–1158.  https://doi.org/10.2514/3.24155CrossRefGoogle Scholar
  72. 72.
    Lieuwen TC, Yang V (2006) Combustion instabilities in gas turbine engines.  https://doi.org/10.2514/4.866807
  73. 73.
    Sirignano WA, Liu F (1999) Performance increases for gas-turbine engines through combustion inside the turbine. J Propuls Power 15:111–118.  https://doi.org/10.2514/2.5398CrossRefGoogle Scholar
  74. 74.
    Stone C, Menon S (2002) Swirl control of combustion instabilities in a gas turbine combustor. Proc Combust Inst 29:155–160.  https://doi.org/10.1016/S1540-7489(02)80024-4CrossRefGoogle Scholar
  75. 75.
    Venkataraman KK, Preston LH, Simons DW, Lee BJ, Lee JG, Santavicca DA (1999) Mechanism of combustion instability in a lean premixed dump combustor. J Propuls Power 15:909–918.  https://doi.org/10.2514/2.5515
  76. 76.
    Murat Altay H, Speth RL, Hudgins DE, Ghoniem AF (2009) The impact of equivalence ratio oscillations on combustion dynamics in a backward-facing step combustor. Combust Flame 156:2106–2116.  https://doi.org/10.1016/j.combustflame.2009.07.024CrossRefGoogle Scholar
  77. 77.
    Rashwan SS, Nemitallah MA, Habib MA (2016) Review on premixed combustion technology: stability, emission control, applications, and numerical case study. Energy Fuels.  https://doi.org/10.1021/acs.energyfuels.6b02386
  78. 78.
    Li L, Guo Z, Zhang C, Sun X (2010) A passive method to control combustion instabilities with perforated liner. Chin J Aeronaut 23:623–630.  https://doi.org/10.1016/S1000-9361(09)60263-6CrossRefGoogle Scholar
  79. 79.
    Hoffmann S, Weber G, Judith H, Hermann J, Otthmann A (1998) Application of active combustion control to siemens heavy duty gas turbines. Appl Veh Technol Panel Symp Lisbon, Port, vol 14.  https://doi.org/10.1115/1.2818459
  80. 80.
    Kokanović S, Guidati G, Torchalla S, Schuermans B (2006) Active combustion control system for reduction of NOx and pulsation levels in gas turbines. In: ASME Turbo Expo 2006 power land, sea air, pp 1–10Google Scholar
  81. 81.
    Lacarelle A, Matho L, Paschereit CO (2010) Scalar mixing enhancement in a swirl stabilized combustor trough passive and active injection control. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2010.  https://doi.org/10.2514/6.2010-1332
  82. 82.
    Lacarelle A, Paschereit CO (2012) Increasing the passive scalar mixing quality of jets in crossflow with fluidics actuators. J Eng Gas Turbines Power 134:021503.  https://doi.org/10.1115/1.4004373CrossRefGoogle Scholar
  83. 83.
    Lee H, Hernandez S, McDonell V, Steinthorsson E, Mansour A, Hollon B (2009) Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels. In: Proceedings ASME Turbo Expo 2009 power land, sea air, pp 411–419.  https://doi.org/10.1115/gt2009-59502
  84. 84.
    Estefanos WS (2016) Effects of the fuel-air mixing on combustion instabilities and NOx emissions in lean premixed combustionGoogle Scholar
  85. 85.
    Habib M et al (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35(9):741–764CrossRefGoogle Scholar
  86. 86.
    Edenhofer O (2014) Mitigation of climate change. Cambridge University Press, CambridgeGoogle Scholar
  87. 87.
    Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J (2015) Int J Greenhouse Gas Control 40:55–125CrossRefGoogle Scholar
  88. 88.
    Nemitallah MA, Habib MA (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl Energy 111:401–415CrossRefGoogle Scholar
  89. 89.
    Nemitallah M, Alkhaldi S, Abdelhafez A, Habib M (2018) Effect analysis on the macrostructure and static stability limits of oxy-methane flames in a premixed swirl combustor. Energy 159:86–96CrossRefGoogle Scholar
  90. 90.
    Amato A, Hudak B, D’Carlo P, Noble D, Scarborough D, Seitzman J, Lieuwen T (2011) Methane Oxy-combustion for Low CO2 cycles: blow-off measurements and analysis. J Eng Gas Turbines Power 33:061503-1Google Scholar
  91. 91.
    Kutne P, Kapadia K, Meier W, Aigner M (2011) Experimental analysis of the combustion behavior of oxyfuel flames in a gas turbine model combustor. Proc Combust Inst 33:3383–3390CrossRefGoogle Scholar
  92. 92.
    Watanabe H, Shanbhogue S, Taamallah S, Chakroun NW, Ghoniem AF (2016) The structure of swirl-stabilized turbulent premixed CH4/air and CH4/O2/CO2 flames and mechanisms of intense burning of oxy-flames. Combust Flame 174:111–119Google Scholar
  93. 93.
    Runyon J et al (2015) Methane-Oxygen flame stability in a generic premixed gas turbine swirl combustor at varying thermal power and pressure. In: ASME Turbo Expo 2015: turbine technical conference and exposition 2015. American Society of Mechanical EngineersGoogle Scholar
  94. 94.
    Xie Y et al (2013) Experimental and numerical study on laminar flame characteristics of methane oxy-fuel mixtures highly diluted with CO2. Energy Fuels 27(10):6231–6237CrossRefGoogle Scholar
  95. 95.
    Song Y et al (2015) The chemical mechanism of the effect of CO2 on the temperature in methane oxy-fuel combustion. Int J Heat Mass Transf 86:622–628CrossRefGoogle Scholar
  96. 96.
    Li Y-H et al (2015) Effects of flue gas recirculation on the premixed oxy-methane flames in atmospheric condition. Energy 89:845–857CrossRefGoogle Scholar
  97. 97.
    Kim TH et al (2016) Chemical and radiation effects on flame extinction and NOx formation in oxy-methane combustion diluted with CO2. Fuel 177:235–243CrossRefGoogle Scholar
  98. 98.
    Habib MA, Nemitallah MA, Ahmed P, Sharqawy MH, Badr HM, Muhammad I, Yaqub M (2015) Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions. Energy 86:105–114Google Scholar
  99. 99.
    Granados DA, Chejne F, Mejía JM (2015) Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns. Appl Energy 158:107–117CrossRefGoogle Scholar
  100. 100.
    Nemitallah MA (2016) A study of methane oxy-combustion characteristics inside a modified design button-cell membrane reactor utilizing a modified oxygen permeation model for reacting flows. J Nat Gas Sci Eng 28:61–73CrossRefGoogle Scholar
  101. 101.
    Nemitallah MA, Habib MA, Mezghani K (2015) Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy 84:600–611CrossRefGoogle Scholar
  102. 102.
    Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EMA (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 96:654–665CrossRefGoogle Scholar
  103. 103.
    Taamallah S, Vogiatzaki K, Alzahrani FM, Mokheimer EMA, Habib MA, Ghoniem AF (2015) Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. Appl Energy 154:1020–1047CrossRefGoogle Scholar
  104. 104.
    Wicksall DM, Agrawal AK, Schefer RW, Keller JO (2005) The interaction of flame and flow field in a lean premixed swirl-stabilized combustor operated on H2/CH4/air. Proc Combust Inst 30(2):2875–2883CrossRefGoogle Scholar
  105. 105.
    Williams TC, Shaddix CR, Schefer RW (2007) Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combust Sci Technol 180(1):64–88Google Scholar
  106. 106.
    Rashwan SS, Ibrahim AH, Abou-arab TW (2015) Experimental investigation of oxy-fuel combustion of CNG flames stabilized over a perforated-plate burner. In: 18th International Flame Res Found. Friesing, Munich, pp 1–11Google Scholar
  107. 107.
    Ramadan IA, Ibrahim AH, Abou-Arab TW, Rashwan SS, Nemitallah MA, Habib MA (2016) Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames. Appl Energy 178:19–28CrossRefGoogle Scholar
  108. 108.
    Jerzak W, Kuźnia M (2016) Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off. J Nat Gas Sci Eng 29:46–54Google Scholar
  109. 109.
    Shi B, Zhu Z, Wang N, Lub P, Ishizukac I (2015) An experimental study on oxy-fuel combustion of methane under various oxygen mole fractions. In: 8th international symposium on coal combustion, Beijing, ChinaGoogle Scholar
  110. 110.
    Joo PH, Charest MRJ, Groth CPT, Gülder ÖL (2013) Comparison of structures of laminar methane–oxygen and methane–air diffusion flames from atmospheric to 60atm. Combust Flame 160(10):1990–1998CrossRefGoogle Scholar
  111. 111.
    Ditaranto M, Anantharaman R, Weydahl T (2013) Performance and NOx emissions of refinery fired heaters retrofitted to hydrogen combustion. Energy Proc 37:7214–7220CrossRefGoogle Scholar
  112. 112.
    Ditaranto M, Hals J (2006) Combustion instabilities in sudden expansion oxy–fuel flames. Combust Flame 146(3):493–512CrossRefGoogle Scholar
  113. 113.
    Speth RL, Altay HM, Ghoniem AF (2012) Dynamics and stability limits of syngas combustion, pp 1–10Google Scholar
  114. 114.
    Kutne P, Kapadia BK, Meier W, Aigner M (2011) Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor. Proc Combust Inst 33(2):3383–3390CrossRefGoogle Scholar
  115. 115.
    Oh J, Noh D, Ko C (2013) The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace. Energy 62:362–369CrossRefGoogle Scholar
  116. 116.
    Liu CY, Chen G, Sipöcz N, Assadi M, Bai XS (2012) Characteristics of oxy-fuel combustion in gas turbines. Appl Energy 89(1):387–394CrossRefGoogle Scholar
  117. 117.
    Yin C, Yan J (2016) Oxy-fuel combustion of pulverized fuels: combustion fundamentals and modeling. Appl Energy 162:742–762CrossRefGoogle Scholar
  118. 118.
    Rashwan SS, Ibrahim AH, Abou-Arab TW, Nemitallah MA, Habib MA (2016) Experimental investigation of partially premixed methane-air and methane-oxygen flames stabilized over a perforated-plate burner. Appl Energy 169:126–137CrossRefGoogle Scholar
  119. 119.
    Taamallah S, Chakroun NW, Watanabe H, Shanbhogue SJ, Ghoniem AF (2017) On the characteristic flow and flame times for scaling oxy and air flame stabilization modes in premixed swirl combustion. Proc Combust Inst 36(3):3799–3807CrossRefGoogle Scholar
  120. 120.
    Watanabe H, Shanbhogue SJ, Taamallah S, Chakroun NW, Ghoniem AF (2016) The structure of swirl-stabilized turbulent premixed CH4/air and CH4/O2/CO2 flames and mechanisms of intense burning of oxy-flames. Combust FlameGoogle Scholar
  121. 121.
    Amato A, Hudak R, Noble DR, Scarborough D, D’Carlo PA, Seitzman JM, Lieuwen T (2010) Methane oxy-combustion for low CO2 cycles: blowoff measurements and modeling. In: Proceedings Asme Turbo Expo, pp 1–11Google Scholar
  122. 122.
    Rashwan SS, Ibrahim AH, Abou-Arab TW, Nemitallah MA, Habib MA (2017) Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner. EnergyGoogle Scholar
  123. 123.
    Abdelhafez A, Nemitallah MA, Rashwan SS, Habib MA (2018) Adiabatic flame temperature for controlling the macrostructures and stabilization modes of premixed methane flames in a model gas-turbine combustor. Energy Fuels 32:7868–7877CrossRefGoogle Scholar
  124. 124.
    Jerzak W, Kuźnia M (2016) Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off. J Nat Gas Sci Eng 29:46–54CrossRefGoogle Scholar
  125. 125.
    Hu X, Yu Q, Liu J, Sun N (2014) Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation. EnergyGoogle Scholar
  126. 126.
    Ditaranto M, Saanum I (2015) Operation of a swirl-stabilized oxy-fuel burner in pressurized conditions. Flexible and clean fuel conversion to industry, Freising, Germany, 1–3 June 2015, Paper n. 23Google Scholar
  127. 127.
    Treloar RD (2005) Gas installation technology. Wiley-Blackwell, February 2009, ISBN: 978-1-405-14682-1Google Scholar
  128. 128.
    Casleton KH et al (2008) System issues and tradeoffs associated with syngas production and combustion, vol 2202, May 2008Google Scholar
  129. 129.
    Klimstra J (1986) Interchangeability of gaseous fuels—the importance of the Wobbe-index. SAE Trans 95(6):962–972Google Scholar
  130. 130.
    Döbbeling K, Meeuwissen T, Zajadatz M, Flohr P (2008) Fuel flexibility of the Alstom GT13E2 medium sized gas turbine, no. 43130, pp 719–725Google Scholar
  131. 131.
    Richards GA, McMillian MM, Gemmen RS, Rogers WA, Cully SR (2001) Issues for low-emission, fuel-flexible power systems. Prog Energy Combust Sci 27(2):141–169CrossRefGoogle Scholar
  132. 132.
    Mcdonell V, Petersen E (2018) Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability, vol 130, Jan 2008, pp 1–10Google Scholar
  133. 133.
    Cocchi S, Sigali S (2010) Development of a low-NOx hydrogen-fuelled combustor for 10 MW class gas turbines, no 43970, pp 1025–1035Google Scholar
  134. 134.
    Cellek MS, Pınarbas A (2017) ScienceDirect investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas and hydrogen as fuels, vol 3Google Scholar
  135. 135.
    Patil KR, Khanwalkar PM, Thipse SS, Kavathekar KP (2009) Development of HCNG blended fuel engine with control of NOx emissions. In: Second international conference on emerging trends in engineering & technology, pp 1068–1074Google Scholar
  136. 136.
    Nagalingam B, Duebel F, Schmillen K (1983) Performance study using natural gas, hydrogen-supplemented natural gas and hydrogen in AVL research engine. Int J Hydrogen Energy 8(9):715–720CrossRefGoogle Scholar
  137. 137.
    Lamnaouer M (2007) Flashback analysis of ULN hydrogen enriched natural gas mixtures. Tech Rep, Univ Cent, FloridaGoogle Scholar
  138. 138.
    Hoekstra RL, Collier K, Mulligan N, Chew L (1995) Experimental study of a clean burning vehicle fuel. Int J Hydrogen Energy 20(9):737–745CrossRefGoogle Scholar
  139. 139.
    Munshi SR, Nedelcu C, Harris J, Edwards T, Williams J, Lynch F et al (2004) Hydrogen blended natural gas operation of a heavy duty turbocharged lean burn spark ignition engine. SAE Tech PapGoogle Scholar
  140. 140.
    Ma F, Liu H, Wang Y, Li Y, Wang J, Zhao S (2008) Combustion and emission characteristics of a port-injection HCNG engine under various ignition timings. Int J Hydrogen Energy 33(2):816–822CrossRefGoogle Scholar
  141. 141.
    Ma F et al (2012) Effect of compression ratio and spark timing on the power performance and combustion characteristics of an HCNG engine. Int J Hydrogen Energy 37(23):18486–18491CrossRefGoogle Scholar
  142. 142.
    Wang J et al (2007) Combustion behaviors of a direct-injection engine operating on various fractions of natural gas–hydrogen blends. Int J Hydrogen Energy 32(15):3555–3564CrossRefGoogle Scholar
  143. 143.
    Ma F, Wang Y, Liu H, Li Y, Wang J, Zhao S (2007) Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. Int J Hydrogen Energy 32(18):5067–5075CrossRefGoogle Scholar
  144. 144.
    Chacartegui R, Sánchez D, De Escalona JM, Muñoz A, Sánchez T (2013) Gas and steam combined cycles for low calorific syngas fuels utilization. Appl Energy 101:81e92Google Scholar
  145. 145.
    He F, Li Z, Liu P, Ma L, Pistikopoulos EN (2012) Operation window and part-load performance study of a syngas fired gas turbine. Appl Energy 89:133e41Google Scholar
  146. 146.
    Chacartegui R, Sánchez D, de Escalona JM, Jimenez-Espadafor F, Muñoz A, Sánchez T (2012) Sphera project: assessing the use of syngas fuels in gas turbines and combined cycles from a global perspective. Fuel Process Tech 103:134–145Google Scholar
  147. 147.
    Frassoldati A, Faravelli T, Ranzi E (2007) The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int J Hydrogen Energy 32(15):3471–3485Google Scholar
  148. 148.
    Noble DR, Zhang QG, Lieuwen T (2006) Hydrogen effects upon flashback and blowout. In: Proceedings of ICEPAG, p 24012Google Scholar
  149. 149.
    Lieuwen T (2008) Flashback characteristics of syngas-type fuels under steady and pulsating conditions. In: School of aerospace engineering. Georgia Institute of Technology, Atlanta, Georgia. http://doi.org/10.2172/924769
  150. 150.
    Fu J, Tang C, Jin W, Thi LD, Huang Z, Zhang Y (2013) Study on laminar flame speed and flame structure of syngas with varied compositions using oh-plif and spectrograph. Int J Hydrogen Energy 38:1636–1643CrossRefGoogle Scholar
  151. 151.
    Wang J, Huang Z, Kobayashi H, Ogami Y (2012) Laminar burning velocities and flame characteristics of CO-H2-CO2-O2 mixtures. Int J Hydrogen Energy 37:19158–19167CrossRefGoogle Scholar
  152. 152.
    Lee HC, Jiang LY, Mohamad AA (2014) A review on the laminar flame speed and ignition delay time of Syngas mixtures. Int J Hydrogen Energy 39:1105–1121CrossRefGoogle Scholar
  153. 153.
    Verkamp FJ, Hardin M, Williams JR (1967) Ammonia combustion properties and performance in gas turbine burners. In: International symposium of combustion, vol 11, pp 985–992Google Scholar
  154. 154.
    Pratt DT (1967) Performance of ammonia fired gas turbine combustors. San Diego, USA. Report T-9-TS-67-5 SolarGoogle Scholar
  155. 155.
    Newhall H, Starkman ES (1966) Theoretical performance of ammonia as a gas turbine fuel. SAE, Technical paper 660768Google Scholar
  156. 156.
    Li J, Huang H, Kobayashi N, He Z, Nagai Y (2014) Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation. Int J Energy Res 38:1214–1223CrossRefGoogle Scholar
  157. 157.
    Ryu K, Zacharakis-Jutz GE, Kong SC (2014) Performance enhancement of ammonia-fuelled engine by using dissociation catalyst for hydrogen generation. Int J Hydrogen Energy 39:2390–2398CrossRefGoogle Scholar
  158. 158.
    Lear B (2012) Ammonia-fuelled combustion turbines. Available online https://nh3fuel.files.wordpress.com/2012/05/lear_nh3.pdf (2017-10-29)
  159. 159.
    Karabeyoglu A, Brian E, Stevens J, Cantwell B (2012) Development of ammonia based fuels for environmentally friendly power generation. In: 10th international energy conversion engineering conference, p 4055Google Scholar
  160. 160.
    Karabeyoglu A, Brian E (2012) Fuel conditioning system for ammonia fired power plants. NH3 Fuel Association. Available online https://nh3fuel.files.wordpress.com/2012/10/evans-brian.pdf (2016-11-21)
  161. 161.
    Valera-Medina A, Xiao H, Owen-Jones M, David WIF, Bowen PJ (2018) Ammonia for power. Prog Energy Combust Sci 69:63–102CrossRefGoogle Scholar
  162. 162.
    Zhen HS, Cheung CS, Leung CW, Choy YS (2012) Effects of hydrogen concentration on the emission and heat transfer of a premixed LPG-hydrogen flame. Int J Hydrogen Energy 37:6097–6105CrossRefGoogle Scholar
  163. 163.
    Mansouri Z, Aouissi M, Boushaki T (2016) Numerical computations of premixed propane flame in a swirl-stabilized burner: effects of hydrogen enrichment, swirl number and equivalence ratio on flame characteristics. Int J Hydrogen Energy 41:9664–9678CrossRefGoogle Scholar
  164. 164.
    Wu L, Kobayashi N, Li Z, Huang H (2016) Experimental study on the effects of hydrogen addition on the emission and heat transfer characteristics of laminar methane diffusion flames with oxygen-enriched air. Int J Hydrogen Energy 41:2023–2036CrossRefGoogle Scholar
  165. 165.
    Mazas A, Fiorina B, Lacoste D, Schuller T (2011) Effects of water vapor addition on the laminar burning velocity of oxygen-enhanced methane flames. Combust Flame 158:2428–2440CrossRefGoogle Scholar
  166. 166.
    Richards G, McMillian M, Gemmen R, Rogers W, Cully S (2001) Issues for low-emission, fuel-flexible power systems. Prog Energy Combust Sci 27:141–169CrossRefGoogle Scholar
  167. 167.
    Lieuwen T, McDonell V, Petersen E, Santavicca D (2008) Fuel flexibility influences on premixed combustor blowout, flashback, auto ignition, and stability. J Eng Gas Turbines Power 130:11506–11516CrossRefGoogle Scholar
  168. 168.
    Griebel P, Boshek E, Jansohn P (2007) Lean blowout limits and NOx emissions of turbulent, lean premixed, hydrogen-Enriched methane air flames at high pressure. J Eng Gas Turbines Power 129:404–410CrossRefGoogle Scholar
  169. 169.
    Wietschel M, Ball M (2009) The future of hydrogen—opportunities and challenges. Hydrog Econ Oppor Challenges 613–639.  https://doi.org/10.1017/cbo9780511635359.021
  170. 170.
    Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36:4356–4362.  https://doi.org/10.1016/J.ENPOL.2008.09.036CrossRefGoogle Scholar
  171. 171.
    European Commission (2008) Hyways: the European hydrogen roadmap: contract SES6-502596, EUR-OP, LuxembourgGoogle Scholar
  172. 172.
    Choudhuri AR, Gollahalli SR (2000) Combustion characteristics of hydrogen-hydrocarbon hybrid fuels. Int J Hydrogen Energy 25:451–462.  https://doi.org/10.1016/S0360-3199(99)00027-0CrossRefGoogle Scholar
  173. 173.
    Gu M, Chu H, Liu F (2016) Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combust Flame 166:216–228.  https://doi.org/10.1016/j.combustflame.2016.01.023CrossRefGoogle Scholar
  174. 174.
    Park SH, Lee KM, Hwang CH (2011) Effects of hydrogen addition on soot formation and oxidation in laminar premixed C2H2/air flames. Int J Hydrogen Energy 36:9304–9311.  https://doi.org/10.1016/j.ijhydene.2011.05.031CrossRefGoogle Scholar
  175. 175.
    Pandey P, Pundir BP, Panigrahi PK (2007) Hydrogen addition to acetylene-air laminar diffusion flames: studies on soot formation under different flow arrangements. Combust Flame 148:249–262.  https://doi.org/10.1016/j.combustflame.2006.09.004CrossRefGoogle Scholar
  176. 176.
    Gülder ÖL, Snelling DR, Sawchuk RA (1996) Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames. Symp Combust 26:2351–2358.  https://doi.org/10.1016/S0082-0784(96)80064-6CrossRefGoogle Scholar
  177. 177.
    Halter F, Chauveau C, Gökalp I (2007) Characterization of the effects of hydrogen addition in premixed methane/air flames. Int J Hydrogen Energy 32:2585–2592.  https://doi.org/10.1016/j.ijhydene.2006.11.033CrossRefGoogle Scholar
  178. 178.
    Gersen S, Anikin NB, Mokhov AV, Levinsky HB (2008) Ignition properties of methane/hydrogen mixtures in a rapid compression machine. Int J Hydrogen Energy 33:1957–1964.  https://doi.org/10.1016/j.ijhydene.2008.01.017CrossRefGoogle Scholar
  179. 179.
    Cheng RK, Oppenheim AK (1984) Autoignition in methane hydrogen mixtures. Combust Flame 58:125–139.  https://doi.org/10.1016/0010-2180(84)90088-9CrossRefGoogle Scholar
  180. 180.
    Hu E, Huang Z, He J, Jin C, Zheng J (2009) Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int J Hydrogen Energy 34:4876–4888.  https://doi.org/10.1016/j.ijhydene.2009.03.058CrossRefGoogle Scholar
  181. 181.
    Di Sarli V, Di Benedetto A (2007) Laminar burning velocity of hydrogen–methane/air premixed flames 32:637–646.  https://doi.org/10.1016/j.ijhydene.2006.05.016
  182. 182.
    Tang C, Huang Z, Jin C, He J, Wang J, Wang X et al (2008) Laminar burning velocities and combustion characteristics of propane–hydrogen–air premixed flames. Int J Hydrogen Energy 33:4906–4914.  https://doi.org/10.1016/j.ijhydene.2008.06.063CrossRefGoogle Scholar
  183. 183.
    Sankaran R, Im HG (2006) Effects of hydrogen addition on the Markstein length and flammability limit of stretched methane/air premixed flames. Combust Sci Technol 178:37–41.  https://doi.org/10.1080/00102200500536217org/10.1080/00102200500536217CrossRefGoogle Scholar
  184. 184.
    Nakahara M, Kido H (2008) Study on the turbulent burning velocity of hydrogen mixtures including hydrocarbons. AIAA J 46.  https://doi.org/10.2514/1.23560
  185. 185.
    Daniele S, Jansohn P, Mantzaras J, Boulouchos K (2011) Turbulent flame speed for syngas at gas turbine relevant conditions. Proc Combust Inst 33:2937–2944.  https://doi.org/10.1016/J.PROCI.2010.05.057CrossRefGoogle Scholar
  186. 186.
    Daniele S, Jansohn P, Boulouchos K (2009) Experimental investigation of lean premixed syngas combustion at gas turbine relevant conditions: lean blow out limits, emissions and turbulent flame speed. Ital Sect Combust InstGoogle Scholar
  187. 187.
    Wang J, Huang Z, Tang C, Miao H, Wang X (2009) Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. Int J Hydrogen Energy 34:1084–1096.  https://doi.org/10.1016/j.ijhydene.2008.11.010CrossRefGoogle Scholar
  188. 188.
    Schefer RW (2003) Hydrogen enrichment for improved lean flame stability. Int J Hydrogen Energy 28:1131–1141CrossRefGoogle Scholar
  189. 189.
    Kim HS, Arghode VK, Gupta AK (2009) Flame characteristics of hydrogen-enriched methane-air premixed swirling flames. Int J Hydrogen Energy 34:1063–1073.  https://doi.org/10.1016/j.ijhydene.2008.10.035CrossRefGoogle Scholar
  190. 190.
    Cheng RK, Littlejohn D (2008) Laboratory study of premixed H2-Air and H2–N2-air flames in a low-swirl injector for ultralow emissions gas turbines. J Eng Gas Turbines Power 130:031503.  https://doi.org/10.1115/1.2836480CrossRefGoogle Scholar
  191. 191.
    Zhang Q, Noble D, Lieuwen T (2006) Characterization of fuel composition effects in H2∕CO∕CH4 mixtures upon lean blowout. J Eng Gas Turbines Power 129(3):688–694CrossRefGoogle Scholar
  192. 192.
    Taamallah S, Vogiatzaki K, Alzahrani FM, Mokheimer EMA, Habib MA, Ghoniem AF (2015) Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations. Appl Energy 154:1020–1047.  https://doi.org/10.1016/j.apenergy.2015.04.044
  193. 193.
    Lounici MS, Boussadi A, Loubar K, Tazerout M (2014) Experimental Investigation on NG dual fuel engine improvement by hydrogen enrichment. Int J Hydrogen Energy 39:21297–21306Google Scholar
  194. 194.
    Schefer RW, Wicksall DM, Agrawal AK (2002) Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proc Combust Inst 29:843–851CrossRefGoogle Scholar
  195. 195.
    Tuncer O (2013) Premixed combustion of hydrogen and syngas fuels in gas turbine combustors. In: International conference on renewable energy research and applications, Madrid, Spain, pp 20–23Google Scholar
  196. 196.
    Kim S-H, Yoon Y, Jeung I-S (2000) Nitrogen oxides emissions in turbulent hydrogen jet non-premixed flames: effects of coaxial air and flame radiation. Proc Combust Inst 28:463–470Google Scholar
  197. 197.
    Arai M (2000) Flue gas recirculation for low NOx combustion system. In: Proceedings of 2000 international joint power generation conference, Miami Beach, Florida, vol 7Google Scholar
  198. 198.
    Ling Zhongqian, Zhou Hao, Ren Tao (2015) Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner. Energy 91:110–116CrossRefGoogle Scholar
  199. 199.
    Tahmasebzadehbaie M, Sayyaadi H (2016) Efficiency enhancement and NOx emission reduction of a turbo-compressor gas engine by mass and heat recirculations of flue gases. Appl Therm Eng 99:661–671CrossRefGoogle Scholar
  200. 200.
    Neumeier Y, Weksler Y, Zinn BT, Seitzman JM, Jagoda J, Kenny J (2005) Ultra-low emissions combustor with non-premixed reactants injection. In: AIAA 2005-3775 41st AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, 10–13 July 2005, Tucson, ArizonaGoogle Scholar
  201. 201.
    Neumeier Y, Zinn B, Weksler Y, Seitzman J, Jacoga J, Kenny J (2005) Novel Combustion for ultra-low emissions with non-premixed reactants injection. AIAA-2005-3775Google Scholar
  202. 202.
    Bobba MK (2007) Flame stabilization and mixing characteristics in a stagnation point reverse flow combustor. PhD Thesis, Georgia Institute of Technology, Atlanta, GAGoogle Scholar
  203. 203.
    Gopalatrishnan P (2008) Effects of the reacting flowfield on combustion process in a stagnation point reverse flow combustor. PhD Thesis, Georgia Institute of Technology, Atlanta, GAGoogle Scholar
  204. 204.
    Gopalakrishnan P, Bobba MK, Seitzman JM (2007) Controlling mechanisms for low NOx emissions in a non-premixed stagnation point reverse flow combustor. Proc Combust Inst 31:3401–3408CrossRefGoogle Scholar
  205. 205.
    Bobba MK, Gopalakrishnan P, Periagaram K, Seitzman JM (2008) Flame structure and stabilization mechanisms in a stagnation-point reverse-flow combustor. J Eng Gas Turbines Power 130:031505-1CrossRefGoogle Scholar
  206. 206.
    Castela M, Veríssimo AS, Rocha AMA, Costa M (2012) Experimental study of the combustion regimes occurring in a laboratory combustor. Combust Sci Technol 184(2):243–258CrossRefGoogle Scholar
  207. 207.
    Undapalli S, Srinivasan S, Menon S (2009) LES of premixed and non-premixed combustion in a stagnation point reverse flow combustor. Proc Combust Inst 32:1537–1544CrossRefGoogle Scholar
  208. 208.
    Wnning JA, Wnning JG (1997) Flameless oxidation to reduce thermal no-formation. Prog Energy Combust Sci 23(1):8194Google Scholar
  209. 209.
    Perpignan AAV, Gangoli Rao A, Roekaerts DJEM (2018) Flameless combustion and its potential towards gas turbines. Prog Energy Combust Sci 69:2862CrossRefGoogle Scholar
  210. 210.
    Cavaliere A, de Joannon M (2004) Mild combustion. Prog Energy Combust Sci 30(4):329366CrossRefGoogle Scholar
  211. 211.
    Kruse S, Kerschgens B, Berger L, Varea E, Pitsch H (2015) Experimental and numerical study of MILD combustion for gas turbine applications. Appl Energy 148:456–465CrossRefGoogle Scholar
  212. 212.
    Katsuki M, Hasegawa T (1998) The science and technology of combustion in highly preheated air. In: 27th symposium (International) on combustion, 27, 31353146Google Scholar
  213. 213.
    Doan NAK, Swaminathan N, Minamoto Y (2018) DNS of MILD combustion with mixture fraction variations. Combust Flame 189:173189CrossRefGoogle Scholar
  214. 214.
    Luckerath R, Meier W, Aigner M (2008) Flox combustion at high pressure with different fuel compositions. J Eng Gas Turbines Power 130:011505CrossRefGoogle Scholar
  215. 215.
    Levy Y, Sherbaum V, Arfi P (2004) Basic thermodynamics of Floxcom, the low-NOx gas turbines adiabatic combustor. Appl Therm Eng 24:1593–1605CrossRefGoogle Scholar
  216. 216.
    Lammel O, Schutz H, Schmitz G, Luckerath R, Stohr M, Noll B, Aigner M, Hase M, Krebs W (2010) Flox combustion at high power density and high flame temperatures. J Eng Gas Turbines Power 132:121503CrossRefGoogle Scholar
  217. 217.
    Arghode VK, Gupta AK, Bryden KM (2012) High intensity colorless distributed combustion for ultra low emissions and enhanced performance. Appl Energy 92:822–830CrossRefGoogle Scholar
  218. 218.
    Alne KS (2007) Reduction of NOx emissions from the gas turbines for Skarv Idun (Master’s thesis, Institutt for energi-og prosessteknikk)Google Scholar
  219. 219.
    Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35(4):293–364CrossRefGoogle Scholar
  220. 220.
    Nemitallah MA, Rashwan SS, Mansir IB, Abdelhafez AA, Habib MA (2018) Review of novel combustion techniques for clean power production in gas turbines. Energy Fuels 32(2):979–1004CrossRefGoogle Scholar
  221. 221.
    Boyce MP (2012) Gas turbine engineering handbook, 4th edn. Elsevier, pp 66–70. ISBN 0123838428Google Scholar
  222. 222.
    Schorr MM, Chalfin J (1999) Gas turbine NOx emissions approaching zero—is it worth the price? General Electric Power Generation, Report No. GER, 4172Google Scholar
  223. 223.
    Lefebvre AH, Ballal DR (2010) Gas turbine combustion: alternative fuels and emissions, 3rd edn. CRC press, pp 398–414Google Scholar
  224. 224.
    Lee S, Speight JG, Loyalka SK (2015) Handbook of alternative fuel technologies, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  225. 225.
    Davis LB (1996) Dry low NOx combustion systems for GE heavy-duty gas turbines. In: ASME 1996 international gas turbine and aeroengine congress and exhibition. American Society of Mechanical Engineers, pp V003T06A003-V003T06A003Google Scholar
  226. 226.
    Zajadatz M, Pennell D, Bernero S, Paikert B, Zoli R, Döbbeling K (2013) Development and implementation of the advanced environmental burner for the Alstom GT13E2. J Eng Gas Turbines Power 135(6):061503CrossRefGoogle Scholar
  227. 227.
    Zajadatz M, Lachner R, Bernero S, Motz C, Flohr P (2007) Development and design of Alstoms’s staged fuel gas injection EV burner for NOx reduction. In: Proceedings of ASME Turbo Expo 2007 power land, sea air, 14–17 May 2007, Montreal, CanadaGoogle Scholar
  228. 228.
    Döbbeling K, Hellat J, Koch H (2007) 25 Years of BBC/ABB/Alstom lean premix combustion technologies. J Eng Gas Turbines PowerGoogle Scholar
  229. 229.
    Lebovich S (1984) Vortex stability and breakdown, survey and extension. AIAA J 22(9):1192–1206CrossRefGoogle Scholar
  230. 230.
    Escadier MP (1988) Vortex breakdown: observations and explanations. Prog Aero Sci 25:189–229CrossRefGoogle Scholar
  231. 231.
    Blouch J, Li H, Mueller M, Hook R (2012) Fuel flexibility in LM2500 and LM6000 dry low emission engines. J Eng Gas Turbines Power 134(5):051503CrossRefGoogle Scholar
  232. 232.
    Eckardt D (2014) Gas turbine powerhouse: the development of the power generation gas turbine at BBC–ABB–ALSTOM, 2nd ednGoogle Scholar
  233. 233.
    Bothien MR, Pennel D, Zajadatz M, Döbbeling K (2013) On key features of the AEV burner engine implementation for operational flexibility. In: ASME Turbo Expo, pp GT2013-95693Google Scholar
  234. 234.
    Marchmont C, Florjancic S, Kappis W (2013) Alstom gas turbine technology developments. In: ASME Turbo Expo, pp GT2013-95625Google Scholar
  235. 235.
    Marchmont C, Florjancic S (202) Alstom gas turbine technology trends. In: ASME Turbo Expo, pp 587–598Google Scholar
  236. 236.
    Sattelmayer T, Felchlin MP, Haumann J, Hellat J, Styner D (1992) Second generation low-emission combustors for ABB gas turbines: burner development and tests at atmospheric pressure. J Eng Gas Turbines Power 114:118–125CrossRefGoogle Scholar
  237. 237.
    Aigner M, Mayer A, Schiessel P, Strittmatter W (1990) Second-generation low-emission combustors for ABB gas turbines: tests under full-engine conditions. In: Proceedings of the ASME Turbo ExpoGoogle Scholar
  238. 238.
    Aigner M, Müller G (1993) Second-generation low-emission combustors for ABB gas turbines: field measurements with GT11N-EV. J Eng Gas Turbines PowerGoogle Scholar
  239. 239.
    Paschereit CO, Flohr P, Knöpfel H, Geng W, Steinbach C, Stuber P, Bengtsson K, Gutmark E (2002) Combustion control by extended EV burner fuel lance. In: American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTIGoogle Scholar
  240. 240.
    Cho CH, Baek GM, Sohn CH, Cho JH, Kim HS (2013) A numerical approach to reduction of NOx emission from swirl premix burner in a gas turbine combustor. Appl Therm EngGoogle Scholar
  241. 241.
    Güthe F, Lachner R, Schuermans B, Biagioli F (2006) Flame imaging on the ALSTOM EV-burner: thermo acoustic pulsations and CFD-validation. AIAA PapGoogle Scholar
  242. 242.
    Biagioli F, Güthe F, Schuermans B (2008) Combustion dynamics linked to flame behaviour in a partially premixed swirled industrial burner. Exp Therm Fluid SciGoogle Scholar
  243. 243.
    Döbbeling K, Meeuwissen T, Zajadatz M, Flohr P (2008) Fuel flexibility of the Alstom GT13E2 medium sized gas turbine. In: ASME Turbo Expo, pp 719–725Google Scholar
  244. 244.
    Magni F, Grimm F, Sorato S, Micheli M (2016) GT13E2 low part load operation: extended flexibility down to 30% load. In: ASME Turbo Expo, pp GT2016-57317Google Scholar
  245. 245.
    Reiss F, Griffin T, Reyser K (2002) The ALSTOM GT13E2 medium BTU gas turbine. In: ASME Turbo Expo, pp 705–712Google Scholar
  246. 246.
    Wind T, Güthe F, Syed K (2014) Co-firing of hydrogen and natural gases in lean premixed conventional and reheat burners (Alstom GT26). In: Volume 4A: combustion, fuels and emissionsGoogle Scholar
  247. 247.
    Funke HHW, Beckmann N, Keinz J, Abanteriba S (2017) Numerical and experimental evaluation of a dual-fuel dry-low-NOx micromix combustor for industrial gas turbine applications. In: Proceedings of the ASME Turbo ExpoGoogle Scholar
  248. 248.
    Haj Ayed A, Kusterer K, Funke HHW, Keinz J, Striegan C, Bohn D (2015) Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine. Propuls Power ResGoogle Scholar
  249. 249.
    Asai T, Dodo S, Karishuku M, Yagi N, Akiyama Y, Hayashi A (2015) Performance of multiple-injection dry low-NOx combustors on hydrogen-rich syngas fuel in an IGCC pilot plant. J Eng Gas Turbines PowerGoogle Scholar
  250. 250.
    Rudyak V, Minakov A (2014) Modeling and optimization of Y-type micromixers. Micromachines 5(4):886–912CrossRefGoogle Scholar
  251. 251.
    Karnik R. Microfluidic mixing, pp 1177–1186Google Scholar
  252. 252.
    Karnidakis G, Beskok A, Aluru N (2005) Microflows and nanoflowsGoogle Scholar
  253. 253.
    Conlisk AT (2007) Introduction to microfluidics. By Patrick Tabeling. Oxford University Press, 312 pp. ISBN 019 856864 9. £49.95 (hardback), J Fluid Mech 570:503Google Scholar
  254. 254.
    Hoffmann M, Schluter M, Rubiger N (2006) Experimental investigation of liquid–liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV. Chem Eng Sci 61:2968–2976Google Scholar
  255. 255.
    Hong CC, Choi JW (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4:109–113Google Scholar
  256. 256.
    Jiménez J (2005) The growth of a mixing layer in a laminar channel. J Fluid Mech 535:245–254CrossRefMathSciNetzbMATHGoogle Scholar
  257. 257.
    Aubin J, Fletcher DF, Xuereb C (2005) Design of micromixers using CFD modelling. Chem Eng Sci 60(8–9):2503–2516 (SPEC ISS)Google Scholar
  258. 258.
    Vanka SP, Luo G, Winkler CM (2004) Numerical study of scalar mixing in curved channels at low Reynolds numbers. AIChE J 50(10):2359–2368CrossRefGoogle Scholar
  259. 259.
    Stroock AD, Dertinger SK, Whitesides GM, Ajdari A (2002) Patterning flows using grooved surfaces. Anal Chem 74(20):5306–5312CrossRefGoogle Scholar
  260. 260.
    Wang L, Ma S, Jing W, Bi H, Han X (2014) Mixing enhancement of a passive microfluidic mixer containing triangle baffles, vol 9Google Scholar
  261. 261.
    Hong F, Cao J, Cheng P (2011) A parametric study of AC electrothermal flow in microchannels with asymmetrical interdigitated electrodes, vol 38Google Scholar
  262. 262.
    Kedia KS, Ghoniem AF (2012) Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate. Combust Flame 159(3):1055–1069CrossRefGoogle Scholar
  263. 263.
    Jithin EV, Kishore VR, Varghese RJ (2014) Three-dimensional simulations of steady perforated-plate stabilized propane-air premixed flames. Energy Fuels 28(8):5415–5425CrossRefGoogle Scholar
  264. 264.
    Altay HM, Park S, Wu D, Wee D, Annaswamy AM, Ghoniem AF (2009) Modeling the dynamic response of a laminar perforated-plate stabilized flame. Proc Combust Inst 32 I(1):1359–1366Google Scholar
  265. 265.
    Jamal M, Ibrahim H, Ali M, Elmahallawy M, Abdelhafez A, Nemitallah A, Rashwan S, Habib A (2017) Structure and lean extinction of premixed flames stabilized on conductive perforated plates. Energy FuelsGoogle Scholar
  266. 266.
    Kedia KS, Ghoniem AF (2013) An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate. Proc Combust Inst 34(1):921–928CrossRefGoogle Scholar
  267. 267.
    Rashwan SS, Ibrahim AH, Abou-Arab TW, Nemitallah MA, Habib MA (2017) Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner. Energy 122:159–167CrossRefGoogle Scholar
  268. 268.
    Edacheri Veetil J, Aravind B, Mohammad A, Kumar S, Velamati RK (2017) Effect of hole pattern on the structure of small scale perorated plate burner flames. Fuel 216:722–733Google Scholar
  269. 269.
    Hindasageri V, Kuntikana P, Vedula RP, Prabhu SV (2015) An experimental and numerical investigation of heat transfer distribution of perforated plate burner flames impinging on a flat plate. Int J Therm Sci 94:156–169CrossRefGoogle Scholar
  270. 270.
    Oh S, Shin Y, Kim Y (2016) Stabilization effects of perforated plates on the combustion instability in a lean premixed combustor. Appl Therm Eng 107:508–515CrossRefGoogle Scholar
  271. 271.
    Wang CJ, Wen JX (2014) The effect of a perforated plate on the propagation of laminar hydrogen flames in a channel—a numerical study. Int J Hydrogen Energy 39(36):21335–21342CrossRefGoogle Scholar
  272. 272.
    Li Q et al (2018) Experimental study of flame propagation across a perforated plate. Int J Hydrogen Energy 43(17):8524–8533CrossRefGoogle Scholar
  273. 273.
    York WD, Ziminsky WS, Yilmaz E (2013) Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines. Eng Gas Turbines Power 135:022001CrossRefGoogle Scholar
  274. 274.
    Funke HHW, Boerner S, Keinz J, Kusterer K, Kroniger D, Kitajima J, Kazari M, Horikawa A (2012) Numerical and experimental characterization of low NOx micromix combustion principle for industrial hydrogen gas turbine applications. Proc ASME Turbo Expo 2:1069–1079Google Scholar
  275. 275.
    Dodo S, Asai T, Koizumi H, Takahashi H, Yoshida S, Inoue H (2011) Combustion characteristics of a multiple-injection combustor for dry low-NOx combustion of hydrogen-rich fuels under medium pressure. Proc ASME Turbo Expo 2:467–476Google Scholar
  276. 276.
    Weiland NT, Sidwell TG, Strakey PA (2013) Testing of a hydrogen diffusion flame array injector at gas turbine conditions. Combust Sci TechnolGoogle Scholar
  277. 277.
    Funke HHW, Boerner S, Krebs W, Wolf E (2011) Experimental characterization of low nox micromix prototype combustors for industrial gas turbine applications. In: Proceedings of the ASME Turbo ExpoGoogle Scholar
  278. 278.
    Dodo S, Asai T, Koizumi H, Takahashi H, Yoshida S, Inoue H (2013) Performance of a multiple-injection dry low NOx combustor with hydrogen-rich syngas fuels. J Eng Gas Turbines PowerGoogle Scholar
  279. 279.
    Hollon B, Steinthorsson S, Mansour A, McDonell V, Lee H (2011) Ultra-low emission hydrogen/syngas combustion with a 1.3 MW injector using a micro-mixing lean-premix system. Vol. 2 Combust Fuels Emiss Parts A BGoogle Scholar
  280. 280.
    Hernandez SR, Wang Q, McDonell V, Mansour A, Steinthorsson E, Hollon B (2008) Micro mixing fuel injectors for low emissions hydrogen combustion. Vol. 3 Combust Fuels Emiss Parts A BGoogle Scholar
  281. 281.
    Zhang Y, Yang T, Liu X, Tian L, Fu Z, Zhang K (2012) Reduction of emissions from a syngas flame using micromixing and dilution with CO2. Energy FuelsGoogle Scholar
  282. 282.
    Zhang Y, Zhang H, Tian L, Ji P, Ma S (2015) Temperature and emissions characteristics of a micro-mixing injection hydrogen-rich syngas flame diluted with N2. Int J Hydrogen EnergyGoogle Scholar
  283. 283.
    Chen L, Yong SZ, Ghoniem A (2012) Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci 38:156–214Google Scholar
  284. 284.
    Haslbeck J, Capicotto P, Juehn N, Lewis E, Rutkowski M, Woods M et al (2007) Bituminous coal to electricity, vol 1. Washington D.C., DOE/NETL-1291Google Scholar
  285. 285.
    BERR (2007) AEA Energy & Environment. COAL R309 BERR/Pub URN 07/1251Google Scholar
  286. 286.
    Andersson K, Johnsson F (2006) Process evaluation of an 865 MWe lignite fired O2/CO2 power plant. Energy Convers Manage 47:3487–3498CrossRefGoogle Scholar
  287. 287.
    Okawa M, Kimura N, Kiga T, Takano S, Arai K, Kato M (1997) Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2. Energy Convers Manage 38:S123–S127CrossRefGoogle Scholar
  288. 288.
    Varagani R, Chatel F, Pranda P, Rostam M, Lu Y, Bose A (2005) The 4th annual conference on carbon sequestration. Alexandria, VAGoogle Scholar
  289. 289.
    Habib MA, Nemitallah MA (2015) Design of an ion transport membrane reactor for application in fire tube boilers. Energy 81:787–801CrossRefGoogle Scholar
  290. 290.
    Nemitallah MA, Habib MA, Ben-Mansour R, Ghoniem AF (2014) Design of an ion transport membrane reactor for gas turbine combustion application. J Memb Sci 450:60–71CrossRefGoogle Scholar
  291. 291.
    Nemitallah MA, Habib MA, Ben-Mansour R (2013) Investigations of oxy-fuel combustion and oxygen permeation in an ITM reactor using a two-step oxy-combustion reaction kinetics model. J Memb Sci 432:1–12CrossRefGoogle Scholar
  292. 292.
    Kirchen P, Apo DJ, Hunt A, Ghoniem AF (2013) A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc Combust Inst 34(2):3463–3470CrossRefGoogle Scholar
  293. 293.
    Tan X, Li K, Thursfield A, Metcalfe IS (2008) Oxyfuel combustion using a catalytic ceramic membrane reactor. Catal Today 131(1–4):292–304CrossRefGoogle Scholar
  294. 294.
    Wei Y, Wang Y, Tang J, Li Z, Wang H (2013) Oxy-fuel combustion for CO2 capture using a CO2-tolerant oxygen transporting membrane. AIChE J 59(10):3856–3862CrossRefGoogle Scholar
  295. 295.
    Puig-Arnavat M, Søgaard M, Hjuler K, Ahrenfeldt J, Henriksen UB, Hendriksen PV (2015) Integration of oxygen membranes for oxygen production in cement plants. Energy 91:852–865CrossRefGoogle Scholar
  296. 296.
    Duan L, Yue L, Qu W, Yang Y (2015) Study on CO2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane. Energy 93:20–30CrossRefGoogle Scholar
  297. 297.
    Hwang KR, Park JW, Lee SW, Hong S, Lee C-B, Oh DK et al (2015) Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery. Energy 90:1192–1198CrossRefGoogle Scholar
  298. 298.
    Chiesa P, Romano MC, Spallina V, Turi DM, Mancuso L (2013) Efficient low CO2 emissions power generation by mixed conducting membranes. Energy Proc 37:905–913CrossRefGoogle Scholar
  299. 299.
    Manzolini G, Gazzani M, Turi DM, Macchi E (2013) Application of hydrogen selective membranes to IGCC. Energy Proc 37:2274–2283CrossRefGoogle Scholar
  300. 300.
    Voleno A, Romano MC, Turi DM, Chiesa P, Ho MT, Wiley DE (2014) Post-combustion CO2 capture from natural gas combined cycles by solvent supported membranes. Energy Proc 63:7389–7397CrossRefGoogle Scholar
  301. 301.
    Romano MC (2013) Ultra-high CO2 capture efficiency in CFB oxyfuel power plants by calcium looping process for CO2 recovery from purification units vent gas. Int J Greenh Gas Control 18:57–67CrossRefGoogle Scholar
  302. 302.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion part II: analysis and comparison of alternatives. Energy 36:4721e39Google Scholar
  303. 303.
    Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal 343:2–45CrossRefGoogle Scholar
  304. 304.
    An R, Yu B, Li R, Wei Y-M (2018) Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy 226:862–880CrossRefGoogle Scholar
  305. 305.
    Belizón M, Fernández-Ponce MT, Casas L, Mantell C, Martínez de la Ossa-Fernández EJ (2018) Supercritical impregnation of antioxidant mango polyphenols into a multilayer PET/PP food-grade film. J CO2 Utilization 25:56–67Google Scholar
  306. 306.
    Rafiee A, Khalilpour KR, Milani D, Panahi M (2018) Trends in CO2 conversion and utilization: a review from process systems perspective. J Environ Chem Eng 6:5771–5794Google Scholar
  307. 307.
    Wang L, Alsaker N, Skreiberg Q, Hovd B (2017) Effect of carbonization conditions on CO2 gasification reactivity of biocarbon. Energy Proc 142:932–937CrossRefGoogle Scholar
  308. 308.
    Durán I, Rubiera F, Pevida C (2018) Microalgae: potential precursors of CO2 adsorbents. J CO2 Utilization 26:454–464Google Scholar
  309. 309.
    Jiang X, Jiao Y, Moran C, Nie X, Gong Y, Guo X, Walton KS, Song C (2018) CO2 hydrogenation to methanol on PdCu bimetallic catalysts with lower metal loadings. Catal Commun, in press.  https://doi.org/10.1016/j.catcom.2018.09.006
  310. 310.
    Zhang S, Liu X, Li M, Wei Y, Zhang G, Han J, Zhu X, Ge Q, Wang H (2018) Metal-free amino-incorporated organosilica nanotubes for cooperative catalysis in the cycloaddition of CO2 to epoxides. Catal Today, in press.  https://doi.org/10.1016/j.cattod.2018.07.004
  311. 311.
    Maya EM, Rangel-Rangel E, Díaz U, Iglesias M (2018) Efficient cycloaddition of CO2 to epoxides using novel heterogeneous organocatalysts based on tetramethylguanidine-functionalized porous polyphenylenes. J CO2 Utilization 25:170–179Google Scholar
  312. 312.
    Marchegiani M, Nodari M, Tansini F, Massera C, Della Ca N (2017) Urea derivatives from carbon dioxide and amines by guanidine catalysis: easy access to imidazolidin-2-ones under solvent-free conditions. J CO2 Utilization 21:553–561Google Scholar
  313. 313.
    Liu P, Yang Y, White MG (2013) Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation. Surf Sci Rep 68:233–272CrossRefGoogle Scholar
  314. 314.
    Leonzio G (2018) State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. J CO2 Utilization 27:326–354Google Scholar
  315. 315.
    Davis T, Bucher T, Jesse Goellner RM (2013) Novel CO2 utilization concepts.  https://doi.org/10.1016/j.enconman.2007.12.029
  316. 316.
    Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38:S475–S479.  https://doi.org/10.1016/S0196-8904(96)00313-5CrossRefGoogle Scholar
  317. 317.
    Wilson MHH, Groppo J, Placido A, Graham S, Morton SA, Santillan-Jimenez E et al (2014) CO2 recycling using microalgae for the production of fuels. Appl Petrochemical Res 1–13.  https://doi.org/10.1007/s13203-014-0052-3
  318. 318.
    Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718.  https://doi.org/10.1007/s00253-008-1518-yCrossRefGoogle Scholar
  319. 319.
    Huang CH, Tan CS (2014) A review: CO2 utilization. Aerosol Air Qual Res 14:480–499.  https://doi.org/10.4209/aaqr.2013.10.0326CrossRefGoogle Scholar
  320. 320.
    Song C (2002) CO2 Conversion and utilization: an overview. CO2 Convers Util 809:1–2.  https://doi.org/10.1021/bk-2002-0809.ch001
  321. 321.
    Dilmore R, Lu P, Allen D, Soong Y, Hedges S, Fu JK et al (2008) Sequestration of CO2 in mixtures of bauxite residue and saline wastewater. Energy Fuels 22:343–353.  https://doi.org/10.1021/ef7003943CrossRefGoogle Scholar
  322. 322.
    Power G, Gräfe M, Klauber C (2011) Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108:33–45.  https://doi.org/10.1016/j.hydromet.2011.02.006
  323. 323.
    Descoins C, Mathlouthi M, Le Moual M, Hennequin J (2006) Carbonation monitoring of beverage in a laboratory scale unit with on-line measurement of dissolved CO2. Food Chem 95:541–553.  https://doi.org/10.1016/j.foodchem.2004.11.031CrossRefGoogle Scholar
  324. 324.
    Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4:333–337.  https://doi.org/10.2113/gselements.4.5.333CrossRefGoogle Scholar
  325. 325.
    North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514.  https://doi.org/10.1039/c0gc00065eCrossRefGoogle Scholar
  326. 326.
    Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W et al (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231.  https://doi.org/10.1016/j.cattod.2009.08.015CrossRefGoogle Scholar
  327. 327.
    Chen Y, Brown PH, Hu K, Black RM, Prior RL, Ou B et al (2011) Supercritical CO2 decaffeination of unroasted coffee beans produces melanoidins with distinct NF-κB inhibitory activity. J Food Sci 76.  https://doi.org/10.1111/j.1750-3841.2011.02304.x
  328. 328.
    Franca AS (2016) Coffee: decaffeination. Encycl Food Heal 232–236. http://dx.doi.org/10.1016/B978-0-12-384947-2.00183-5
  329. 329.
    Zhan BJ, Xuan DX, Poon CS, Shi CJ (2016) Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. Cem Concr Compos 71:122–130.  https://doi.org/10.1016/j.cemconcomp.2016.05.002CrossRefGoogle Scholar
  330. 330.
    Zhan B, Poon C, Shi C (2013) CO2 curing for improving the properties of concrete blocks containing recycled aggregates. Cem Concr Compos 42:1–8.  https://doi.org/10.1016/j.cemconcomp.2013.04.013CrossRefGoogle Scholar
  331. 331.
    Zhang X, Han B (2007) Cleaning using CO2-based solvents. Clean Soil Air Water 35:223–229.  https://doi.org/10.1002/clen.200700007CrossRefGoogle Scholar
  332. 332.
    Zuo-tang W, Guo-xiong W, Rudolph V, Diniz da Costa JC, Pei-ming H, Lin X (2009) Simulation of CO2-geosequestration enhanced coal bed methane recovery with a deformation-flow coupled model. Proc Earth Planet Sci 1:81–89.  https://doi.org/10.1016/j.proeps.2009.09.015
  333. 333.
    Ozdemir E (2009) Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams. Int J Coal Geol 77:145–152.  https://doi.org/10.1016/j.coal.2008.09.003CrossRefGoogle Scholar
  334. 334.
    Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35:351–367.  https://doi.org/10.1016/j.geothermics.2006.08.002CrossRefGoogle Scholar
  335. 335.
    Olasolo P, Juárez MC, Morales MP, Damico S, Liarte IA (2016) Enhanced geothermal systems (EGS): a review. Renew Sustain Energy Rev 56:133–144.  https://doi.org/10.1016/j.rser.2015.11.031CrossRefGoogle Scholar
  336. 336.
    Ferguson RC, Nichols C, Van Leeuwen T, Kuuskraa VA (2009) Storing CO2 with enhanced oil recovery. Energy Proc 1:1989–1996.  https://doi.org/10.1016/j.egypro.2009.01.259CrossRefGoogle Scholar
  337. 337.
    McGinnis RL, Hancock NT, Nowosielski-Slepowron MS, McGurgan GD (2013) Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination 312:67–74.  https://doi.org/10.1016/j.desal.2012.11.032CrossRefGoogle Scholar
  338. 338.
    Al-Hallaj S, Parekh S, Farid MM, Selman JR (2006) Solar desalination with humidification-dehumidification cycle: review of economics. Desalination 195:169–186.  https://doi.org/10.1016/j.desal.2005.09.033CrossRefGoogle Scholar
  339. 339.
    El-Naas MH, Al-Marzouqi AH, Chaalal O (2010) A combined approach for the management of desalination reject brine and capture of CO2. Desalination 251:70–74.  https://doi.org/10.1016/j.desal.2009.09.141CrossRefGoogle Scholar
  340. 340.
    Guo TN, Fu ZM (2007) The fire situation and progress in fire safety science and technology in China. Fire Saf J 42:171–182.  https://doi.org/10.1016/j.firesaf.2006.10.005CrossRefGoogle Scholar
  341. 341.
    Tilman D, Reich P, Phillips H, Menton M, Patel A, Vos E et al (2000) Fire suppression and ecosystem carbon storage. Ecology 81:2680–2685.  https://doi.org/10.1890/0012-9658(2000)081%5b2680:fsaecs%5d2.0.co;2
  342. 342.
    Lenihan JM, Bachelet D, Neilson RP, Drapek R (2008) Simulated response of conterminous United States ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth response to CO2. Glob Planet Change 64:16–25.  https://doi.org/10.1016/j.gloplacha.2008.01.006CrossRefGoogle Scholar
  343. 343.
    Ahmed J, Alam T (2012) An overview of food packaging: material selection and the future of packaging. Handb Food Process Des 1237–1283.  https://doi.org/10.1002/9781444398274.ch41
  344. 344.
    Han JH (2005) Innovations in food packaging. Innov Food Packag 517.  https://doi.org/10.1016/b978-012311632-1/50046-2
  345. 345.
    Vaclavik V, Christian E (2008) Food preservation and processing. Essentials Food Sci 425–446.  https://doi.org/10.1007/978-0-387-69940-0_17
  346. 346.
    Schaub T, Paciello RA (2011) A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. Angew Chemie Int Ed 50:7278–7282.  https://doi.org/10.1002/anie.201101292CrossRefGoogle Scholar
  347. 347.
    Kortlever R, Balemans C, Kwon Y, Koper MTM (2015) Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal Today 244:58–62.  https://doi.org/10.1016/j.cattod.2014.08.001CrossRefGoogle Scholar
  348. 348.
    Prior SA, Brett Runion G, Christopher Marble S, Rogers HH, Gilliam CH, Allen Torbert H (2011) A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture. HortScience 46:158–162CrossRefGoogle Scholar
  349. 349.
    Christopher Marble S, Prior SA, Brett Runion G, Allen Torbert H, Gilliam CH, Fain GB (2011) The importance of determining carbon sequestration and greenhouse gas mitigation potential in ornamental horticulture. HortScience 46:240–244CrossRefGoogle Scholar
  350. 350.
    Huff CA, Sanford MS (2011) Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J Am Chem Soc 133:18122–18125.  https://doi.org/10.1021/ja208760jCrossRefGoogle Scholar
  351. 351.
    Zhang C, Jun KW, Kwak G, Lee YJ, Park HG (2016) Efficient utilization of carbon dioxide in a gas-to-methanol process composed of CO2/steam-mixed reforming and methanol synthesis. J CO2 Util 16:1–7.  https://doi.org/10.1016/j.jcou.2016.05.005
  352. 352.
    Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115:12936–12973.  https://doi.org/10.1021/acs.chemrev.5b00197CrossRefGoogle Scholar
  353. 353.
    Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GKS (2016) Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J Am Chem Soc 138:778–781.  https://doi.org/10.1021/jacs.5b12354CrossRefGoogle Scholar
  354. 354.
    Huijgen WJJ, Comans RNJ, Witkamp GJ (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers Manag 48:1923–1935.  https://doi.org/10.1016/j.enconman.2007.01.035CrossRefGoogle Scholar
  355. 355.
    Mayoral MC, Andrés JM, Gimeno MP (2013) Optimization of mineral carbonation process for CO2 sequestration by lime-rich coal ashes. Fuel 106:448–454.  https://doi.org/10.1016/j.fuel.2012.11.042CrossRefGoogle Scholar
  356. 356.
    Huisman GW, Gray D (2002) Towards novel processes for the fine-chemical and pharmaceutical industries. Curr Opin Biotechnol 13:352–358.  https://doi.org/10.1016/S0958-1669(02)00335-XCrossRefGoogle Scholar
  357. 357.
    Kellaway I (2001) Transport processes in pharmaceutical systems, vol 228.  https://doi.org/10.1016/s0378-5173(01)00823-7
  358. 358.
    Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43.  https://doi.org/10.1016/j.progpolymsci.2005.08.002CrossRefGoogle Scholar
  359. 359.
    Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10:207–234.  https://doi.org/10.1039/a906486iCrossRefGoogle Scholar
  360. 360.
    Pipitone G, Bolland O (2009) Power generation with CO2 capture: technology for CO2 purification. Int J Greenh Gas Control 3:528–534.  https://doi.org/10.1016/j.ijggc.2009.03.001CrossRefGoogle Scholar
  361. 361.
    Lombardi L (2003) Life cycle assessment comparison of technical solutions for CO2 emissions reduction in power generation. Energy Convers Manag 44:93–108.  https://doi.org/10.1016/S0196-8904(02)00049-3CrossRefGoogle Scholar
  362. 362.
    Beér JM (2007) High efficiency electric power generation: the environmental role. Prog Energy Combust Sci 33:107–134.  https://doi.org/10.1016/j.pecs.2006.08.002MathSciNetCrossRefGoogle Scholar
  363. 363.
    Oral J, Sikula J, Puchyr R, Hajny Z, Stehlik P, Bebar L (2005) Processing of waste from pulp and paper plant. J Clean Prod 13:509–515.  https://doi.org/10.1016/j.jclepro.2003.09.005CrossRefGoogle Scholar
  364. 364.
    Gavrilescu D (2008) Energy from biomass in pulp and paper mills. Environ Eng Manag J 7:537–546CrossRefGoogle Scholar
  365. 365.
    Kauf F (1999) Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. Int J Therm Sci 38:325–330.  https://doi.org/10.1016/S1290-0729(99)80098-2CrossRefGoogle Scholar
  366. 366.
    Colasson S, Haberschill P (2010) Effect of refrigerant charge on global performances of a transcritical CO2 heat pump. Sustain Refrig Heat Pump Technol Conf Stock, Sweden, pp 1–7.  https://doi.org/10.3969/j.issn.0258-2724.2010.05.005
  367. 367.
    Agrawal R, Roberts M (2000) Dual mixed refrigerant cycle for gas liquefactionGoogle Scholar
  368. 368.
    Hénon FE, Camaiti M, Burke ALC, Carbonell RG, DeSimone JM, Piacenti F (1999) Supercritical CO2 as a solvent for polymeric stone protective materials. J Supercrit Fluids 15:173–179.  https://doi.org/10.1016/s0896-8446(99)00005-4
  369. 369.
    Lee SY, Seo S, Broda JC, Pal S, Santoro RJ (2000) An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor. Proc Combust Inst 28:775–782.  https://doi.org/10.1016/S0082-0784(00)80280-5CrossRefGoogle Scholar
  370. 370.
    Sun J, Liu X, Tong Y, Deng D (2014) A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Mater Des 63:519–530.  https://doi.org/10.1016/j.matdes.2014.06.057CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Ahmed A. Abdelhafez
    • 1
  • Mohamed A. Habib
    • 1
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations