Advertisement

An Enhanced Convolutional Neural Network Model Based on Weather Parameters for Short-Term Electricity Supply and Demand

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1151)

Abstract

Short-term electricity supply and demand forecasting using weather parameters including: temperature, wind speed, and solar radiations improve the operational efficiency and accuracy of power systems. There are many weather parameters which have influential affect on the supply and demand of electricity, but temperature, solar radiations, and wind speed are the most important parameters. Our proposed time series model is based on preprocessing, feature extraction, data preparation, and Enhanced Convolutional Neural Network referred as ECNN module for short-term weather parameters forecasting up to 6-h ahead. The proposed ECNN time series model is applied on 61 locations of United States, collected from National Solar Radiation Database (NSRDB). Model trained on 15-years data and validated on additional two-years out of sample data. Simulation result shows that our proposed model performs better than traditional benchmark models in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Relative Root Mean Square Error (RMSE%) performance metrics. Result shows that the proposed model is effective for short-term forecasting of temperature, solar radiations, and wind speed. Moreover, proposed model improves the accuracy and operational efficiency of power systems.

References

  1. 1.
    Yixian, L., Roberts, M.C., Sioshansi, R.: A vector autoregression weather model for electricity supply and demand modeling. J. Mod. Power Syst. Clean Energy 6, 763–776 (2018)CrossRefGoogle Scholar
  2. 2.
    Torabi, M., Hashemi, S., Saybani, M.R., Shamshirband, S., Mosavi, A.: A hybrid clustering and classification technique for forecasting short-term energy consumption. Environ. Prog. Sustain. Energy 38, 66–76 (2019)CrossRefGoogle Scholar
  3. 3.
    Lang, K., Zhang, M., Yuan, Y., Yue, X.: Short-term load forecasting based on multivariate time series prediction and weighted neural network with random weights and kernels. Clust. Comput. 22, 12589–12597 (2019)CrossRefGoogle Scholar
  4. 4.
    Kaba, K., Sarıgül, M., Avcı, M., Kandırmaz, H.M.: Estimation of daily global solar radiation using deep learning model. Energy 162, 126–135 (2018)CrossRefGoogle Scholar
  5. 5.
    Lee, W., Kim, K., Park, J., Kim, J., Kim, Y.: Forecasting solar power using long-short term memory and convolutional neural networks. IEEE Access 6, 73068–73080 (2018)CrossRefGoogle Scholar
  6. 6.
    Lago, J., De Brabandere, K., De Ridder, F., De Schutter, B.: Short-term forecasting of solar irradiance without local telemetry: a generalized model using satellite data. Sol. Energy 173, 566–577 (2018)CrossRefGoogle Scholar
  7. 7.
    Majumder, I., Dash, P., Bisoi, R.: Variational mode decomposition based low rank robust kernel extreme learning machine for solar irradiation forecasting. Energy Convers. Manag. 171, 787–806 (2018)CrossRefGoogle Scholar
  8. 8.
    Zhang, J., Wei, Y.-M., Li, D., Tan, Z., Zhou, J.: Short term electricity load forecasting using a hybrid model. Energy 158, 774–781 (2018)CrossRefGoogle Scholar
  9. 9.
    Fan, G.-F., Peng, L.-L., Hong, W.-C.: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Appl. Energy 224, 13–33 (2018)CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Xu, P., Chu, Y., Li, W., Wu, Y., Ni, L., et al.: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 195, 659–670 (2017)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Wu, H., Liu, H.: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction. Energy Convers. Manag. 167, 203–219 (2018)CrossRefGoogle Scholar
  12. 12.
    Singh, S., Mohapatra, A.: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. Energy 136, 758–768 (2019)CrossRefGoogle Scholar
  13. 13.
    Li, C., Xiao, Z., Xia, X., Zou, W., Zhang, C.: A hybrid model based on synchronous optimization for multi-step short-term wind speed forecasting. Appl. Energy 215, 131–144 (2018)CrossRefGoogle Scholar
  14. 14.
    Song, J., Wang, J., Lu, H.: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting. Appl. Energy 215, 643–658 (2018)CrossRefGoogle Scholar
  15. 15.
    Santhosh, M., Venkaiah, C., Kumar, D.V.: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction. Energy Convers. Manag. 168, 482–493 (2018)CrossRefGoogle Scholar
  16. 16.
    Wilcox, S.M.: National solar radiation database 1991–2010 update: user’s manual (No. NREL/TP-5500-54824). National Renewable Energy Laboratory (NREL), Golden (2012)Google Scholar
  17. 17.
    Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 73–79 (2011)CrossRefGoogle Scholar
  18. 18.
    Jayalakshmi, T., Santhakumaran, A.: Statistical normalization and back propagation for classification. Int. J. Comput. Theory Eng. 3, 1793–8201 (2011)Google Scholar
  19. 19.
    Langlois, D., Chartier, S., Gosselin, D.: An introduction to independent component analysis: InfoMax and FastICA algorithms. Tutor. Quant. Methods Psychol. 6, 31–38 (2010)CrossRefGoogle Scholar
  20. 20.
    Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Prema, V., Rao, K.U.: Time series decomposition model for accurate wind speed forecast. Renew. Wind Water Sol. 2, 18 (2015)CrossRefGoogle Scholar
  22. 22.
    Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Analysis and Forecasting. Wiley, New York (2015)zbMATHGoogle Scholar
  23. 23.
    LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)CrossRefGoogle Scholar
  24. 24.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  25. 25.
    Marquez, R., Coimbra, C.F.: Proposed metric for evaluation of solar forecasting models. J. Sol. Energy Eng. 135, 011016 (2013) CrossRefGoogle Scholar
  26. 26.
    Samuel, O., Alzahrani, F.A., Hussen Khan, R.J.U., Farooq, H., Shafiq, M., Afzal, M.K., Javaid, N.: Towards modified entropy mutual information feature selection to forecast medium-term load using a deep learning model in smart homes. Entropy 22(1), 2020 (2020)CrossRefGoogle Scholar
  27. 27.
    Khalid, R., Javaid, N., Al-zahrani, F.A., Aurangzeb, K., Qazi, E.U.H., Ashfaq, T.: Electricity load and price forecasting using Jaya-Long Short Term Memory (JLSTM) in smart grids. Entropy 22(1), 2020 (2020)Google Scholar
  28. 28.
    Mujeeb, S., Javaid, N.: ESAENARX and DE-RELM: novel schemes for big data predictive analytics of electricity load and price. Sustain. Cities Soc. 51, 101642 (2019)CrossRefGoogle Scholar
  29. 29.
    Mujeeb, S., Alghamdi, T.A., Ullah, S., Fatima, A., Javaid, N., Saba, T.: Exploiting deep learning for wind power forecasting based on big data analytics. Appl. Sci. 9(20), 4417 (2019)CrossRefGoogle Scholar
  30. 30.
    Naz, A., Javaid, N., Rasheed, M.B., Haseeb, A., Alhussein, M., Aurangzeb, K.: Game theoretical energy management with storage capacity optimization and photo-voltaic cell generated power forecasting in micro grid. Sustainability 11(10), 2763 (2019)CrossRefGoogle Scholar
  31. 31.
    Naz, A., Javed, M.U., Javaid, N., Saba, T., Alhussein, M., Aurangzeb, K.: Short-term electric load and price forecasting using enhanced extreme learning machine optimization in smart grids. Energies 12(5), 866 (2019)CrossRefGoogle Scholar
  32. 32.
    Mujeeb, S., Javaid, N., Ilahi, M., Wadud, Z., Ishmanov, F., Afzal, M.K.: Deep long short-term memory: a new price and load forecasting scheme for big data in smart cities. Sustainability 11(4), 987 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.COMSATS University IslamabadIslamabadPakistan

Personalised recommendations