Advertisement

OPTISIA: An Evolutionary Approach to Parameter Optimisation in a Family of Point-Set Pattern-Discovery Algorithms

Conference paper
  • 478 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1168)

Abstract

We propose a genetic algorithm (GA), OPTISIA, for efficiently finding optimal parameter combinations when running OMNISIA [15], a program that implements a family of analysis and compression algorithms based on the SIA point-set pattern discovery algorithm [20]. The GA, when given a point-set representation of a piece of music as input, runs OMNISIA multiple times, attempting to evolve a combination of parameter values that achieves the highest compression factor on the input piece. When evaluated on two musicological tasks, the system consistently selected well-performing parameters for Forth’s algorithm [6] compared to combinations found in published evaluations on the same musicological tasks.

Keywords

Pattern discovery Genetic algorithm Parameter optimization Music analysis COSIATEC OMNISIA Geometric algorithms Forth’s algorithm Point sets 

References

  1. 1.
    Boot, P., Volk, A., de Haas, W.B.: Evaluating the role of repeated patterns in folk song classification and compression. J. New Music Res. 45(3), 223–238 (2016)CrossRefGoogle Scholar
  2. 2.
    Cilibrasi, R., Vitányi, P.M.B., de Wolf, R.: Algorithmic clustering of music based on string compression. Comput. Music J. 28(4), 49–67 (2004)CrossRefGoogle Scholar
  3. 3.
    Collins, T.: Improved methods for pattern discovery in music, with applications in automated stylistic composition. Ph.D. thesis, Faculty of Mathematics, Computing and Technology, The Open University, Milton Keynes (2011)Google Scholar
  4. 4.
    Collins, T.: JKU Patterns Development Database (2013). https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip
  5. 5.
    Collins, T., Thurlow, J., Laney, R., Willis, A., Garthwaite, P.H.: A comparative evaluation of algorithms for discovering translational patterns in Baroque keyboard works. In: 11th International Society for Music Information Retrieval Conference (ISMIR 2010), pp. 3–8 (2010)Google Scholar
  6. 6.
    Forth, J.C.: Cognitively-motivated geometric methods of pattern discovery and models of similarity in music. Ph.D. thesis, Department of Computing, Goldsmiths, University of London (2012)Google Scholar
  7. 7.
    Francescomarino, C.D., et al.: Genetic algorithms for hyperparameter optimization in predictive business process monitoring. Inf. Syst. 74, 67–83 (2018)CrossRefGoogle Scholar
  8. 8.
    Giraud, M., Groult, R., Levé, F.: Truth file for the analysis of Bach and Shostakovich fugues (2013/12/27 version) (2013). http://www.algomus.fr/truth/fugues.truth.2013.12
  9. 9.
    Gutowski, M.W.: Biology, physics, small worlds and genetic algorithms. In: Shannon, S. (ed.) Leading Edge Computer Science Research, pp. 165–218. Nova Science Publishers Inc., New York (2005)Google Scholar
  10. 10.
    Hancock, P.J.B.: An empirical comparison of selection methods in evolutionary algorithms. In: Fogarty, T.C. (ed.) AISB EC 1994. LNCS, vol. 865, pp. 80–94. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58483-8_7CrossRefGoogle Scholar
  11. 11.
    Herremans, D., Chew, E.: MorpheuS: generating structured music with constrained patterns and tension. IEEE Trans. Affect. Comput. (2017).  https://doi.org/10.1109/TAFFC.2017.2737984CrossRefGoogle Scholar
  12. 12.
    Hillewaere, R., Manderick, B., Conklin, D.: String quartet classification with monophonic models. In: 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, The Netherlands, pp. 537–542 (2010)Google Scholar
  13. 13.
    Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. CoRR abs/1109.3627 (2011). http://arxiv.org/abs/1109.3627
  14. 14.
    Liu, Y., Wang, C.: A modified genetic algorithm based optimisation of milling parameters. Int. J. Adv. Manuf. Technol. 15(11), 796–799 (1999)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Meredith, D.: The ps13 pitch spelling algorithm. J. New Music Res. 35(2), 121–159 (2006)CrossRefGoogle Scholar
  17. 17.
    Meredith, D.: Computing pitch names in tonal music: a comparative analysis of pitch spelling algorithms. Ph.D. thesis, Faculty of Music, University of Oxford (2007)Google Scholar
  18. 18.
    Meredith, D.: COSIATEC and SIATECCompress: pattern discovery by geometric compression. In: MIREX 2013, Competition on Discovery of Repeated Themes & Sections (2013). https://www.music-ir.org/mirex/abstracts/2013/DM10.pdf
  19. 19.
    Meredith, D.: Music analysis and point-set compression. J. New Music Res. 44(3), 245–270 (2015)CrossRefGoogle Scholar
  20. 20.
    Meredith, D., Lemström, K., Wiggins, G.A.: Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. J. New Music Res. 31(4), 321–345 (2002)CrossRefGoogle Scholar
  21. 21.
    Meredith, D., Lemström, K., Wiggins, G.A.: Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. In: Cambridge Music Processing Colloquium (2003). http://www.titanmusic.com/papers/public/cmpc2003.pdf
  22. 22.
    Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)CrossRefGoogle Scholar
  23. 23.
    Saini, L.M., Aggarwal, S.K., Kumar, A.: Parameter optimisation using genetic algorithm for support vector machine-based price-forecasting model in national electricity market. IET Gener. Transm. Distrib. 4(1), 36–49 (2010)CrossRefGoogle Scholar
  24. 24.
    Vereshchagin, N.K., Vitányi, P.M.B.: Kolmogorov’s structure functions and model selection. IEEE Trans. Inf. Theory 50(12), 3265–3290 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Aalborg UniversityAalborgDenmark

Personalised recommendations